CIVIL ENGINEERING FORMULAS

(Frankie) #1

33


P

P

P P

L
Load

(1 – 2k)L

PxL

x(3k – 3k^2 – x^2 )

k(3x′ – 3x′^2 – k^2 )

k(3 – 4k^2 )

Shear

Moment

Elastic curve
(e)

xL
(x < k)

PLk(1 – k)
2
2 EI

PL^3
6 EI

PL^3
24 EI

PkL

PL^3
6 EI

L
2

L′′
2

kL kL

R = P R = P

x′
(k < x′ < (1 – k))

P

P
R P P

P
P

P PPP
aL aL aL aL aL aL

(Forn an
even number)

(Forn an even number)

Load

maL

Shear

Moment

Elastic curve
(f)

L

R

W=np

(n + 1)(For n an
odd number)

PL
8

n(n + 2)
n + 1

PL
8

L
2

L
2

L
2

L
2

R = nP

a = 1
2 R = nP

1
2

1
n + 1

n(n + 2)
n + 1

PL^2
24 EI
PL^3 n(n + 2)
384 EI

(5n^2 + 10n + 6)
(n + 1)^3
PL (Forn an odd number)
3
384 EI

5 n^2 + 10n + 1
n + l

m(n – m + 1)
n + 1

PL
2

cL

P/2

P/2

P

L
Load

xPL

x(3 – 4x^2 )

Shear

Moment

Elastic curve
(d)

xL

PL^2
16 EI
PL^3
48 EI

PL
4

PL^3
48 EI

1
2

L
2

L
2
R =^12 P R =^12 P

x<^1
2

cL

FIGURE 2.3 Elastic-curve equations for prismatic beams: (d) Shears, moments, and deflections for a concentrated load at midspan of a simply supported
prismatic beam. (e) Shears, moments, and deflections for two equal concentrated loads on a simply supported prismatic beam. (f) Shears, moments, and deflec-
tions for several equal loads equally spaced on a simply supported prismatic beam. (Continued)
Free download pdf