33
P
P
P P
L
Load
(1 – 2k)L
PxL
x(3k – 3k^2 – x^2 )
k(3x′ – 3x′^2 – k^2 )
k(3 – 4k^2 )
Shear
Moment
Elastic curve
(e)
xL
(x < k)
PLk(1 – k)
2
2 EI
PL^3
6 EI
PL^3
24 EI
PkL
PL^3
6 EI
L
2
L′′
2
kL kL
R = P R = P
x′
(k < x′ < (1 – k))
P
P
R P P
P
P
P PPP
aL aL aL aL aL aL
(Forn an
even number)
(Forn an even number)
Load
maL
Shear
Moment
Elastic curve
(f)
L
R
W=np
(n + 1)(For n an
odd number)
PL
8
n(n + 2)
n + 1
PL
8
L
2
L
2
L
2
L
2
R = nP
a = 1
2 R = nP
1
2
1
n + 1
n(n + 2)
n + 1
PL^2
24 EI
PL^3 n(n + 2)
384 EI
(5n^2 + 10n + 6)
(n + 1)^3
PL (Forn an odd number)
3
384 EI
5 n^2 + 10n + 1
n + l
m(n – m + 1)
n + 1
PL
2
cL
P/2
P/2
P
L
Load
xPL
x(3 – 4x^2 )
Shear
Moment
Elastic curve
(d)
xL
PL^2
16 EI
PL^3
48 EI
PL
4
PL^3
48 EI
1
2
L
2
L
2
R =^12 P R =^12 P
x<^1
2
cL
FIGURE 2.3 Elastic-curve equations for prismatic beams: (d) Shears, moments, and deflections for a concentrated load at midspan of a simply supported
prismatic beam. (e) Shears, moments, and deflections for two equal concentrated loads on a simply supported prismatic beam. (f) Shears, moments, and deflec-
tions for several equal loads equally spaced on a simply supported prismatic beam. (Continued)