NCERT Class 10 Mathematics

(vip2019) #1
192 MATHEMATICS

Example 13 : Prove that sec A (1 – sin A)(sec A + tan A) = 1.


Solution :


LHS = sec A (1 – sin A)(sec A + tan A) =


11 sinA
(1 si n A)
cos A cos A cos A

✁ ✁

☎ ✆ ✂ ☎ ✄ ✆

✝ ✞ ✝ ✞

=

2

22

(1 sin A) (1 + sin A) 1 sin A
cos A cos A

✟ ✟


=

2

2

cos A
1
cos A

✠ = RHS

Example 14 : Prove that


cot A – cos A cosec A – 1
cot A + cos A cosec A + 1


Solution : LHS =


cos A cos A
cot A – cos A sin A
cot A + cos A cos A
cos A
sin A




=

cos A^1111
sin A sin A cosec A – 1
11 cosec A + 1
cos A 1 1
sin A sin A

✍ ✎ ✍ ✎

✏ ☛ ✑ ✏ ☛ ✑

✒ ✓☞✒ ✓☞

✍ ✎ ✍ ✎

✏ ✌ ✑ ✏ ✌ ✑

✒ ✓ ✒ ✓

= RHS

Example 15 : Prove that


sin cos (^11) ,
sin cos 1 sec tan


✔✕ ✔✖


✔✖ ✔✕ ✔✕ ✔

using the identity

sec^2 ✘ = 1 + tan^2 ✘.


Solution : Since we will apply the identity involving sec ✘ and tan ✘, let us first
convert the LHS (of the identity we need to prove) in terms of sec ✘ and tan ✘ by


dividing numerator and denominator by cos ✘✙


LHS =

sin – cos + 1 tan 1 sec
sin + cos – 1 tan 1 sec

✚ ✚ ✚✛ ✜ ✚


✚ ✚ ✚✜ ✛ ✚

=

(tan sec ) 1 {(tan sec ) 1} (tan sec )
(tan sec ) 1 {(tan sec ) 1} (tan sec )

✔✖ ✔✕ ✔✖ ✔ ✕ ✔✕ ✔


✔✕ ✔ ✖ ✔✕ ✔ ✖ ✔✕ ✔
Free download pdf