120 5Cables
x
RA
y
H
N(x)
q
x
q
H
N(x)
Q(x)=RA − qx
b
a
l
y
x
q
x
RB
H
RA
H
A j c
x 0
ymax
B
f y^0
Fig. 5.5 (a) Cable under action of uniformly distributed load; (b) free-body diagram of the part of
the cable
Constants of integration should be calculated from the following boundary condi-
tions: atxD 0 (supportA)yD 0 and atxDl(supportB)yDc. Constants of
integration areC 2 D^0 and
C 1 D
c
ql^2
2H
1
l
:
Now the shape of the cable and its slope for anyxmay be presented in the form
y.x/D
ql^2
2H
x^2
l^2
x
l
Cc
x
l
D
1:8 302
2 40
x^2
302
x
30
C 3
x
30
D0:675
x^2
30
x
C0:1x;
tanD
dy
dx
D
ql
2H
2
x
l
1
C
c
l
D
1:8 30
2 40
2
x
30
1
C
3
30
D0:675
x
15
1
C0:1:
Equationy.x/presents nonsymmetrical parabola. In the lowest point the slope of
the cable equals zero
tanD
ql
2H
2
x
l
1
C
c
l
D0;
This equation leads to correspondingx 0 -coordinate
x 0 D
H
q
ql
2H
c
l
D
40
1:8
1:8 30
2 40
3
30
D12:78m:
The maximumyoccurs atx 0
ymaxDy.12:78/D0:675
12:78^2
30
12:78
C0:112:78D3:674m: