120 5Cables
xRAy
HN(x)qxqHN(x)Q(x)=RA − qxbalyxqxRBHRAHA j cx 0ymaxBf y^0Fig. 5.5 (a) Cable under action of uniformly distributed load; (b) free-body diagram of the part of
the cable
Constants of integration should be calculated from the following boundary condi-
tions: atxD 0 (supportA)yD 0 and atxDl(supportB)yDc. Constants of
integration areC 2 D^0 and
C 1 D
cql^2
2H
1
l:Now the shape of the cable and its slope for anyxmay be presented in the form
y.x/D
ql^2
2H
x^2
l^2
x
l
Cc
x
l
D
1:8 302
2 40
x^2
302
x
30
C 3
x
30
D0:675
x^2
30
x
C0:1x;tanD
dy
dx
D
ql
2H
2
x
l
1
C
c
l
D
1:8 30
2 40
2
x
30
1
C
3
30
D0:675x
15
1
C0:1:Equationy.x/presents nonsymmetrical parabola. In the lowest point the slope of
the cable equals zero
tanDql
2H
2x
l 1
Cc
lD0;This equation leads to correspondingx 0 -coordinate
x 0 DH
q
ql
2Hc
l
D40
1:8
1:8 30
2 403
30
D12:78m:The maximumyoccurs atx 0
ymaxDy.12:78/D0:675
12:78^2
3012:78
C0:112:78D3:674m: