Advanced Methods of Structural Analysis

(Jacob Rumans) #1

120 5Cables


x

RA

y
H

N(x)

q

x

q

H

N(x)

Q(x)=RA − qx

b

a

l

y

x

q

x

RB

H

RA

H

A j c

x 0

ymax

B

f y^0

Fig. 5.5 (a) Cable under action of uniformly distributed load; (b) free-body diagram of the part of
the cable


Constants of integration should be calculated from the following boundary condi-
tions: atxD 0 (supportA)yD 0 and atxDl(supportB)yDc. Constants of
integration areC 2 D^0 and


C 1 D


c

ql^2
2H


1
l

:

Now the shape of the cable and its slope for anyxmay be presented in the form


y.x/D
ql^2
2H



x^2
l^2

x
l


Cc
x
l
D
1:8 302
2  40


x^2
302

x
30


C 3
x
30
D0:675


x^2
30
x


C0:1x;

tanD
dy
dx
D
ql
2H



2
x
l
 1


C
c
l
D
1:8 30
2  40


2
x
30
 1


C
3
30
D0:675

x
15
 1


C0:1:

Equationy.x/presents nonsymmetrical parabola. In the lowest point the slope of
the cable equals zero


tanD

ql
2H


2

x
l

 1


C

c
l

D0;

This equation leads to correspondingx 0 -coordinate


x 0 D

H
q


ql
2H



c
l


D

40
1:8


1:8 30
2  40



3
30


D12:78m:

The maximumyoccurs atx 0


ymaxDy.12:78/D0:675


12:78^2
30

12:78


C0:112:78D3:674m:
Free download pdf