Advanced Methods of Structural Analysis

(Jacob Rumans) #1

136 5Cables


Ta b l e 5. 2 Comparison
of parabolic and
catenary cables


Parabolic cable Catenary

f=l
ql
8H
.5:10/
H
ql


cosh
ql
2H
 1


.5:29/

tanmax
ql
2H
.5:9b/ sinh
ql
2H
.5:27/

Nmax
H

s
1 C


ql
2H

 2
.5:12/

r
1 Csinh^2
ql
2H
.5:28/

Some numerical results are presented in Fig.5.12and5.13. Comparison is made
for two types of cables having the sameql=Hratio.


Fig. 5.12 Dimensionless
sag–span ratio vs. total
load–thrust ratio for parabolic
and catenary cables


0.5 1.0 1.5 2.0 2.5 3.0 3.5 ql/H
0.0

f/l

0.1

0.2

0.3

0.4

0.5

0.6

Parabolic shape

Catenary

Fig. 5.13 Dimensionless
maximum cable
tension–thrust ratio vs. total
load–thrust ratio for parabolic
and catenary cables


0.5 1.0 1.5 2.0 2.5 3.0 3.5 ql/H
1.0

1.8

1.4

2.2

2.6

3.0

3.4

Nmax /H

Parabolic shape

Catenary

For thrust–shape problem the ratio ql=H is known. For relatively small
ql=H.<1:5/, dimensionless sagf=land maximum tensionNmax=Hfor parabolic
and catenary cables practically coincide. If loadqis fixed, then increasing ofql=H

Free download pdf