136 5Cables
Ta b l e 5. 2 Comparison
of parabolic and
catenary cables
Parabolic cable Catenary
f=l
ql
8H
.5:10/
H
ql
cosh
ql
2H
1
.5:29/
tanmax
ql
2H
.5:9b/ sinh
ql
2H
.5:27/
Nmax
H
s
1 C
ql
2H
2
.5:12/
r
1 Csinh^2
ql
2H
.5:28/
Some numerical results are presented in Fig.5.12and5.13. Comparison is made
for two types of cables having the sameql=Hratio.
Fig. 5.12 Dimensionless
sag–span ratio vs. total
load–thrust ratio for parabolic
and catenary cables
0.5 1.0 1.5 2.0 2.5 3.0 3.5 ql/H
0.0
f/l
0.1
0.2
0.3
0.4
0.5
0.6
Parabolic shape
Catenary
Fig. 5.13 Dimensionless
maximum cable
tension–thrust ratio vs. total
load–thrust ratio for parabolic
and catenary cables
0.5 1.0 1.5 2.0 2.5 3.0 3.5 ql/H
1.0
1.8
1.4
2.2
2.6
3.0
3.4
Nmax /H
Parabolic shape
Catenary
For thrust–shape problem the ratio ql=H is known. For relatively small
ql=H.<1:5/, dimensionless sagf=land maximum tensionNmax=Hfor parabolic
and catenary cables practically coincide. If loadqis fixed, then increasing ofql=H