6.2 Initial Parameters Method 149M.x 2 /DP.x 2 aP/;
M.x 3 /DP.x 3 aP/M.x 3 aM/^0 :4.Integration of differential equation should be performedwithout opening the
parenthesis.
All of these conditions are called Cauchy–Clebsch conditions.
Initial parameters method is based on the equationEI y^00 DM.x/. Integrating
it twice leads to the following expressions for slope and linear displacement
EIDZ
M.x/dxCC 1 ;EIyDZ
dxZ
M.x/dxCC 1 xCD 1 : (6.1)The transversal displacement and slope atx D 0 areyD y 0 , D 0 .These
displacements are called the initial parameters. Equations (6.1) allow getting the
constants in terms of initial parametersD 1 DEIy 0 andC 1 DEI 0 :Finally (6.1) may be rewritten asEIDEI 0 Z
M.x/dx;EIyDEIy 0 CEI 0 xZ
dxZ
M.x/dx: (6.2)These equations are called the initial parameter equations. For practical purposes,
the integrals from (6.2) should be calculated for special types of loads using the
above rules 1–4. These integrals are presented in Table6.1.Ta b l e 6. 1 Bending moments in unified form for different type of loading
MaM
x
yx
aPPx
yaqqx
yakk=tanbx
ybM.x/ ̇M.xaM/^0 ̇P.xaP/^1 ̇q.xaq/^2
2
̇
k.xak/^3
2 3
R
M.x/dx ̇M.xaM/ ̇
P.xaP/^2
2
̇
q.xaq/^3
2 3
̇
k.xak/^4
2 3 4
R
dxR
M.x/dx ̇
M.xaM/^2
2
̇
P.xaP/^3
2 3
̇q.xaq/^4
2 3 4
̇
k.xak/^5
2 3 4 5