Advanced Methods of Structural Analysis

(Jacob Rumans) #1

182 6 Deflections of Elastic Structures


Fig. 6.22 Design diagram
of the beam and bending
moment diagrams for actual
and unit states


Unit
state

P =1

b =l/8 d =l/4
l/8

M
(m)

a =Pl/8 c =Pl/4

Pl/8

MP
(kN⋅m)

yC

Ω

0.25l 0.25l 0.25l 0.25l

P
EI kEI
Actual
state

AB
DEC

Solution.Bending moment diagrams in actual and unit states are presented in
Fig.6.24. For computationC D.MpM/=N EI, we have to subdivide bending
moment diagrams on the parts, within which the bending stiffness is constant. These
parts for the left half of the beam areADDl=4andDCDl=4. The Vereshcha-
gin rule for multiplication of diagramsMpandMN within portionADleads to the
following result


C1D

1
EI



1
2



Pl
8



l
„ ƒ‚^4 ...
̋



2
3



l
„ƒ‚...^8
yc

D

Pl^3
768 EI

: (a)

For portionCDthe trapezoid rule is applied. According to (6.22)weget

C2D

l=4
6 kEI

2
6
6
42 

Pl
8



l
„ ƒ‚^8 ...
2ab

C 2

Pl
4



l
„ƒ‚^4 ...
2cd

C

Pl
8



l
„ƒ‚^4 ...
ad

C

Pl
4



l
„ƒ‚^8 ...
cb

3
7
7
5 D

7
768

Pl^3
kEI

: (b)

Finally, the vertical displacement atCbecomes


CD 2


Pl^3
768 EI

C

7
768

Pl^3
kEI


D

Pl^3
48 EI


;

where D.1=8/C.7=8k/; factor 2 takes into account symmetrical partCEBof the
beam. IfkD 1 ,then D 1.


Example 6.16.A portal frame is subjected to horizontal forceP as shown in
Fig.6.23. The bending stiffness for each member is shown on design diagram. Cal-
culate (a) the horizontal displacement at the rolled supportBand (b) the angle of
rotation at the same pointB.

Free download pdf