182 6 Deflections of Elastic Structures
Fig. 6.22 Design diagram
of the beam and bending
moment diagrams for actual
and unit states
Unit
state
P =1
b =l/8 d =l/4
l/8
M
(m)
a =Pl/8 c =Pl/4
Pl/8
MP
(kN⋅m)
yC
Ω
0.25l 0.25l 0.25l 0.25l
P
EI kEI
Actual
state
AB
DEC
Solution.Bending moment diagrams in actual and unit states are presented in
Fig.6.24. For computationC D.MpM/=N EI, we have to subdivide bending
moment diagrams on the parts, within which the bending stiffness is constant. These
parts for the left half of the beam areADDl=4andDCDl=4. The Vereshcha-
gin rule for multiplication of diagramsMpandMN within portionADleads to the
following result
C1D
1
EI
1
2
Pl
8
l
„ ƒ‚^4 ...
̋
2
3
l
„ƒ‚...^8
yc
D
Pl^3
768 EI
: (a)
For portionCDthe trapezoid rule is applied. According to (6.22)weget
C2D
l=4
6 kEI
2
6
6
42
Pl
8
l
„ ƒ‚^8 ...
2ab
C 2
Pl
4
l
„ƒ‚^4 ...
2cd
C
Pl
8
l
„ƒ‚^4 ...
ad
C
Pl
4
l
„ƒ‚^8 ...
cb
3
7
7
5 D
7
768
Pl^3
kEI
: (b)
Finally, the vertical displacement atCbecomes
CD 2
Pl^3
768 EI
C
7
768
Pl^3
kEI
D
Pl^3
48 EI
;
where D.1=8/C.7=8k/; factor 2 takes into account symmetrical partCEBof the
beam. IfkD 1 ,then D 1.
Example 6.16.A portal frame is subjected to horizontal forceP as shown in
Fig.6.23. The bending stiffness for each member is shown on design diagram. Cal-
culate (a) the horizontal displacement at the rolled supportBand (b) the angle of
rotation at the same pointB.