230 7 The Force Methodı 22 DMN 2 MN 2
EID1
1 EI1
2 8 8 2
3 8 D170:67
EIm
kN
; (b)ı 12 Dı 21 D
MN 1 MN 2
EID1
1 EI3 C 8
2 5 10 D275
EImkN
:1PDMN 1 M^0
P
EID1
1 EI 32 5 10 1
1 EI1
3 25 5 101
2 EI4
6.2 10 C6/ 32 D2; 294
EI.m/;2PDMN 2 M^0
P
EID1
1 EI3 C 8
2 5 32
1
1 EI5
6.8 25 C 4 5:56:25C 3 0/D1;161:25
EI.m/: (c)3.Verification of coefficients and free terms of canonical equations. The unit and
loaded displacement should be checkedbefore solving of canonical equations
(a). For this purpose, we need to construct the summary unit bending moment
diagramMN†DMN 1 CMN 2 (Fig.7.11f).
First row control.The sum of coefficients in the first canonical equation must
be equal to the result of multiplication the summary unit bending moment
diagramMN†by a primary bending moment diagramMN 1. Indeed,
ı 11 Cı 12 D666:67
EIC275
EID941:67
EI;whileMN†MN 1
EID1
1 EI13 C 18
2 5 10 C1
2 EI1
2 10 10 2
3 10 D941:67
EI:Therefore, the first row control is satisfactory. The second row control may be
performed similarly. Simultaneous control.The total sum of all coefficients and the result of multi-
plication of summary unit bending moment diagram by “itself” areı 11 Cı 12 Cı 21 Cı 22 D1
EI.666:67C 275 C 275 C170:67/D1;387:34
EI;MN†MN†
EI
D1
1 EI1
2
3 3 2
3
3 C1
1 EI5
6
.2 13 13 C 2 18 18C 13 18 C 18 13/C1
2 EI1
2
10 10 2
3
10 D1;387:34
EI
: Free terms control.The sum of the loaded displacements is1PC2PD1
EI.2;294C1;161:25/D3;455:25
EI;