7.4 Computation of Deflections of Redundant Structures 245
ql^216
8
M ql^2
P
l
A
P= 1 l/^2 l
M
q
A B
8
ql^2
RA ql
8
=^30
16 2 8
00 4
6 EI
⎟⎟=
⎠
⎞
⎜
⎜
⎝
⎛
= ⋅ + ⋅ ⋅ − ⋅
×
Δ =
Simpson rule
ver
A l
l ql^2 l ql^2
EIi
MP MP
a
Version 1
l ql^2 ql^2 ql^3
EI
MP M
16 8 48 EI
0 ⋅ 1 + 4 ⋅
6 EI
⎟⎟=
⎠
⎞
⎜⎜⎝
⎛
= ⋅ 1 − ⋅ 1
×
θA=
Version 2
l ql^2 ql^2 ql^3
EI
MP M
A 2 8 48 EI
1
6 EI 16
⎟⎟=
⎠
⎞
⎜⎜
⎝
⎛
θ = × = ⋅ − ⋅ 0
M= 1 A
1
1
1/2
M= 1 A
M
M
0 ⋅ 1 + 4 ⋅
b
Fig. 7.16 (a) Computation of vertical displacement at supportA.(b) Computation of slope at
support A. Two versions of unit state
Ve r s i o n 1 :
AD
MPMN
EI
D
l
6 EI
0 1 C 4
ql^2
16
1
ql^2
8
1
D
ql^3
48 EI
:
Ve r s i o n 2 :
AD
MPMN
EI
D
l
6 EI
0 1 C 4
ql^2
16
1
2
ql^2
8
0
D
ql^3
48 EI
:
It easy to check that superposition principle leads to the same result. Indeed, in case
of simply supported beam subjected to uniformly distributed loadqand support
momentMBDql^2 =8, the slope at supportAequals
ADAqCAMBD
ql^3
24 EI
MBl
6 EI
D
ql^3
24 EI
ql^2
8
l
6 EI
D
ql^3
48 EI
:
The reader is invited to check that slope at supportBis zero. For multiplication
of both bending moment diagrams, it is recommended to apply the Simpson’s rule.