7.4 Computation of Deflections of Redundant Structures 245
ql^2168M ql^2
PlA
P= 1 l/^2 lMq
A B8ql^2
RA ql
8
=^30
16 2 8
00 4
6 EI
⎟⎟=
⎠⎞
⎜
⎜
⎝⎛
= ⋅ + ⋅ ⋅ − ⋅×
Δ =Simpson rulever
A ll ql^2 l ql^2
EIiMP MPaVersion 1l ql^2 ql^2 ql^3
EIMP M
16 8 48 EI
0 ⋅ 1 + 4 ⋅
6 EI
⎟⎟=
⎠⎞
⎜⎜⎝⎛
= ⋅ 1 − ⋅ 1
×
θA=Version 2
l ql^2 ql^2 ql^3
EIMP M
A 2 8 48 EI1
6 EI 16
⎟⎟=
⎠⎞
⎜⎜
⎝⎛
θ = × = ⋅ − ⋅ 0M= 1 A
111/2M= 1 A
MM0 ⋅ 1 + 4 ⋅bFig. 7.16 (a) Computation of vertical displacement at supportA.(b) Computation of slope at
support A. Two versions of unit state
Ve r s i o n 1 :
ADMPMN
EIDl
6 EI
0 1 C 4 ql^2
16 1 ql^2
8 1
Dql^3
48 EI:Ve r s i o n 2 :
ADMPMN
EIDl
6 EI
0 1 C 4 ql^2
161
2ql^2
8 0
Dql^3
48 EI:It easy to check that superposition principle leads to the same result. Indeed, in case
of simply supported beam subjected to uniformly distributed loadqand support
momentMBDql^2 =8, the slope at supportAequals
ADAqCAMBDql^3
24 EIMBl
6 EIDql^3
24 EIql^2
8l
6 EIDql^3
48 EI:The reader is invited to check that slope at supportBis zero. For multiplication
of both bending moment diagrams, it is recommended to apply the Simpson’s rule.