250 7 The Force Method
RN'1,RN'2are reactions in direction of'-displacement due to the same primary
unknowns
The bending moment diagrams, unit displacementsıik, and reactionsRNi1RNi2in
the primary system caused by the unit primary unknownsX 1 andX 2 are shown in
Fig.7.18c.
The expressions (c) in an expanded form are
1sD.RNa1aCRNb1bCRN'1'/D.1aC 0 bC 10 '/
D.10:02C 0 0:01C 10 0:01/D0:12m; (7.4)
2sD.RNa2aCRNb2bCRN'2'/D.0aC 1 bC 8 '/
D.00:02C 1 0:01C 8 0:01/D0:09m:
Canonical equations become
666:67X 1 C275X 2 0:12EID0;
275X 1 C170:67X 2 0:09EID0: (7.5)
The roots of these equations are
X 1 D1:119 10 ^4 EI;
X 2 D7:076 10 ^4 EI: (7.6)
The bending moment diagram is constructed using the superposition principle ac-
cording to (7.15)
MDMN 1 X 1 CMN 2 X 2 : (7.7)
The corresponding calculations are presented in Table7.12.
Ta b l e 7. 1 2 Calculation of bending moments
Points MN 1 MN 1 X 1 MN 2 MN 2 X 2 M
1 10 1.119 8:0 5:6608 4:5418
3 10 1.119 3:0 2:1228 1:0038
4 0.0 0.0 3:0 2:1228 2:1228
5 0.0 0.0 0.0 0.0 0.0
6 10 1.119 0.0 0.0 1.1190
8 0.0 0.0 0.0 0.0 0.0
Factor 10 ^3 EI 10 ^3 EI 10 ^3 EI
signs of
bending moments
+ −
+
−
The resulting bending moment diagram is presented in Fig.7.18d.
Static verification A free body diagram for rigid joint of the frame is shown
in Fig.7.18d. The extended fibers are shown by dotted lines. Equilibrium of the
rigid joint X
MD.2:12281:00381:119/ 10 ^3 EID0: