Advanced Methods of Structural Analysis

(Jacob Rumans) #1

262 7 The Force Method


Ans.

.7:7/ RAD

P
2


3 ^2


;MCD

Plu^2 
2

.3u/; MAD

Pl
2




1 ^2


:

.7:8/ RBD

Pu^2
2

.3u/

1
1 C ̨

; ̨D

3 EI
kl^3

:

7.9–7.10.The uniform beam is subjected to uniformly distributed loadqFigs.P7.9
andP7.10). Calculate the reaction of supports and construct the internal force di-
agrams. Show the elastic curve. For problem (7.10) use the following relationship
RDk,wherekis a stiffness coefficient of elastic support andRandare eaction
and deflection of supportB.


q

l

B
A

Fig. P7.9


k

q

l

B
A

Fig. P7.10


Ans:.7:9/ RAD

5
8

qlI MAD

ql^2
8

I .7:10/ RB D

3
8

ql

1
1 C ̨

; ̨D
3 EI
kl^3

:

7.11.Continuous beam with clamped left support and cantilever at the right is pre-
sented in Fig.P7.11. Compute the bending moments at the supports 1 and 2.


1

q^ =^ 2kN/m

(^23)
P =12kN
a = ul = 6m b= ul =4mc = 2m
l 1 = 8m l 2 = 10m
F =1kN
EI = const n
Fig. P7.11
Ans.M 1 D8:013kN m;M 2 D15:975kN m

Free download pdf