262 7 The Force Method
Ans.
.7:7/ RAD
P
2
3 ^2
;MCD
Plu^2
2
.3u/; MAD
Pl
2
1 ^2
:
.7:8/ RBD
Pu^2
2
.3u/
1
1 C ̨
; ̨D
3 EI
kl^3
:
7.9–7.10.The uniform beam is subjected to uniformly distributed loadqFigs.P7.9
andP7.10). Calculate the reaction of supports and construct the internal force di-
agrams. Show the elastic curve. For problem (7.10) use the following relationship
RDk,wherekis a stiffness coefficient of elastic support andRandare eaction
and deflection of supportB.
q
l
B
A
Fig. P7.9
k
q
l
B
A
Fig. P7.10
Ans:.7:9/ RAD
5
8
qlI MAD
ql^2
8
I .7:10/ RB D
3
8
ql
1
1 C ̨
; ̨D
3 EI
kl^3
:
7.11.Continuous beam with clamped left support and cantilever at the right is pre-
sented in Fig.P7.11. Compute the bending moments at the supports 1 and 2.
1
q^ =^ 2kN/m
(^23)
P =12kN
a = ul = 6m b= ul =4mc = 2m
l 1 = 8m l 2 = 10m
F =1kN
EI = const n
Fig. P7.11
Ans.M 1 D8:013kN m;M 2 D15:975kN m