262 7 The Force Method
Ans..7:7/ RADP
2
3 ^2
;MCDPlu^2
2.3u/; MADPl
2
1 ^2
:.7:8/ RBDPu^2
2.3u/1
1 C ̨; ̨D3 EI
kl^3:7.9–7.10.The uniform beam is subjected to uniformly distributed loadqFigs.P7.9
andP7.10). Calculate the reaction of supports and construct the internal force di-
agrams. Show the elastic curve. For problem (7.10) use the following relationship
RDk,wherekis a stiffness coefficient of elastic support andRandare eaction
and deflection of supportB.
qlB
AFig. P7.9
kqlB
AFig. P7.10
Ans:.7:9/ RAD5
8qlI MADql^2
8I .7:10/ RB D3
8ql1
1 C ̨; ̨D
3 EI
kl^3:7.11.Continuous beam with clamped left support and cantilever at the right is pre-
sented in Fig.P7.11. Compute the bending moments at the supports 1 and 2.
1q^ =^ 2kN/m(^23)
P =12kN
a = ul = 6m b= ul =4mc = 2m
l 1 = 8m l 2 = 10m
F =1kN
EI = const n
Fig. P7.11
Ans.M 1 D8:013kN m;M 2 D15:975kN m