8.2 Canonical Equations of Displacement Method 287
abc
q
4m 6m
5m
3m
1
2
1
P
i6-8
i4-5
P
1
q i1-3
2 8
q
P
1
5
2
7
6
3
4
d
0.333EI
r 21
3 i 4 − 5
l 4 − 5 = 0.333EI
0.24EI 0.24EI
6 i 1 − 3
l 1 − 3 = 0.24EI
3 i4-5
4 i1-3
2 i1-3
r 21
*
M 1
r 11
3 i4-5=1.0EI
4 i1-3=0.8EI 3 i6-8=0.6EI
2 i1-3=0.4EI
State 1: The unit angular displacement Z 1 =1
Z 1 =1
M 2
Z 2 =1
*
r 12
r 22
3 i 4 − 5
l 4 − 5
3 i 4 − 5
l 4 − 5
= 0.333EI
6 i 1 − 3
12 i 1 − 3
l 1 − 3
l^21 − 3
= 0.24EI
State 2: The unit linear displacementZ 2 =1
0.111EI
0.096EI
0.096EI
= 0.096EI
3 i 4 − 5
l^24 − 5
= 0.111EI
6 i 1 − 3
l 1 − 3
6 i 1 − 3
l 1 − 3
r 22
e
f Loaded state
5.0 R 2 P
5 q/2 =5
5.0
q
R 2 P
R 1 P
MP^0
M 3 =4.1667
M 7 = 9.984
M 2 = 2.0833
M 5 =15.36 ul ul
*
*
*
g
MkNm
13.084
1.814 11.349
11.27
1.324
8.037
Fig. 8.8 (a) Design diagram; (b) Primary system; (c) Specified sections; (d) State 1. Bending mo-
ment diagram due to unit angular displacementZ 1 D 1 and free-body diagram for the calculation
ofr 21 .(e) State 2. Bending moment diagram due to unit linear displacementZ 2 D^1 and free-body
diagram for the calculation ofr 22 .(f) Bending moment diagram in the loaded state and free-body
diagram for the calculation of load reactionR2P.(g) Final bending moment diagram M (kN m)