10.1 Construction of Influence Lines by the Force Method 327
X 1 =1
M 1
0.4
1.0
k
0.4l
A
RA
l
1
= RC=^1 l
a
0.0320.0560.0640.048 0.0480.0640.0560.032
Inf. line d 1 P
(all ordinates must
be multiplied by
factor l^2 /EI
+ +
c
268910345 711
ul
P= 1
Load P=1 in the left span Load P=1 in the right span
P= 1
ul ul
d 1 P d 1 P
d 1 P =
6
u−u^3 l^2
⋅EI EI
l^2
6 ⋅
d u−u^3
1 P =
A B C
1
b
ul
0.0480.0840.0960.072 0.0720.0960.0840.048
Inf. line X 1
(factor l)
−− −−
14568910711
P= 1
132
X 1
B
d
Fig. 10.2 (a) Bending moment diagram in primary system due toX 1 D 1 .(b)Locationofthe
loadPD 1 in the left and right span; (c) Influence line forı1P.(d) Primary system and influence
line for primary unknownX 1
Table 10.1 Calculation ofı1P(coefficientl^2 =EIis omitted)
PD 1 in the left span PD 1 in the right span
PointParameter ı1PD
uu^3
6
l^2
EI
Point Parameter ı1PD
^3
6
l^2
EI
1 .A/uD0:0 0.0 6 .B/ D1:0 0.0
2 uD0:2 0.032 7 D0:8 0.048
3 .k/ uD0:4 0.056 8 D0:6 0.064
4 uD0:6 0.064 9 D0:8 0.056
5 uD0:8 0.048 10 D0:2 0.032
6 .B/uD1:0 0.0 11 .C/D0:0 0.0