334 10 Influence Lines Method
10.1.2.1 Unit Coefficients
ı 11 D
Zl
0
MN 1 MN 1
EIx
dsD
Zl
0
1 1 cos'x
EIC
dx
cos'x
D
Zl
0
dx
EIC
D
l
EIC
ı 12 D
Zl
0
MN 1 MN 2
EIx
dsD
Zl
0
1.fy/
dx
EIC
D
Zl
0
f
4f
l^2
.lx/x
dx
EIC
D
fl
3 EIC
ı 12 Dı 21 D
fl
3 EIC
ı 22 D
Zl
0
MN 2 MN 2
EIx
dsD
Zl
0
.fy/^2
dx
EIC
D
Zl
0
f
4f
l^2
.lx/x
(^2)
dx
EIC
D
f^2 l
5 EIC
ı 33 D 2
l
Z^2
0
MN 3 MN 3
EIx
dsD 2
l
Z^2
0
l
2
x
2
dx
EIC
D
l^3
12 EIC
10.1.2.2 Free Terms
SincePD 1 , the free terms are denoted throughıiP
ı1PD
Za
0
MN 1 MNP^0
EIx
dsD
Za
0
1.ax/
dx
EIC
D
a^2
2 EIC
ı2PD
Za
0
M 2 MP^0
EIx
dsD
Za
0
1.fy/ 1 .ax/
dx
EIC
D
Za
0
1
f
4f
l^2
.lx/ x
.ax/
dx
EIC
D
a^2 f
EIC
1
2
C
2
3
u
1
3
u^2
ı3PD
Za
0
M 3 MP^0
EIx
dsD
Za
0
l
2
x
.ax/
dx
EIC
D
l^3
EIC
u^2
1
4
u
6