354 10 Influence Lines Method
l
l l
a P= 1 P= 1
i=EI/l
b
i i
Z 1
1
r 11
3 i^4 i
3 i
Z 1 =1
3 i
3 i
2 i
4 i
k
Mk = −1.2i
Qk = −^3 li M^1
r 11
×
Mk
c
Pu^2 ul
r 1 P
P
ul ul
P in right span
Puu^2 l
r 1 P = −u( 1 −u)^2 l
P in left span r 1 P
P
ul ul
r 1 P=ul 2 ( 1 −u^2 )
Pu 2 ( 1 −u (^2) )⋅l
d
016234578910
Z 1
0.00960.0168
0.01280.01440.00960.0032
0.01920.0144 Inf. line Z 1
Factor l^2 /EI
- −
e
Fig. 10.15 (a,b) Design diagram and primary system. (c) Unit state and corresponding bending
moment diagram. (d) Calculation of free termr1P.(e) Influence line for primary unknownZ 1
(TableA.3), instead of parameterwe must write the parameteru. Therefore, if
loadPD 1 is located in the left span, then the free term of canonical equation
isr1P D u 2 l
1 u^2
.IfloadP D 1 is located in the right span, then we can
directly apply formula from TableA.4,sor1PDu^2 lDu.1u/^2 l.
3.Influence line for primary unknown.Having expressions forr1P in terms of
positionPandr 11 D10i, the expressions for primary unknownZ 1 may be
presented as follows:
PD 1 in the left span
IL.Z 1 /D
1
10i
ul
2
1 u^2
D
u
20
1 u^2
l^2
EI
: