11.6 Analysis of Continuous Beams 399
The final vector of required bending moments (kNm) is
ESDSE 1 CkAQ TZDEI 02 6 6 6 6 6 6 6 6
0:00667
0:00333
0:03
0:03
0:0153 7 7 7 7 7 7 7 7CEI 02 6 6 6 6 6 6 6 6
0:00313
0:00627
0:0204
0:0126
0:00243 7 7 7 7 7 7 7 7DEI 02 6 6 6 6 6 6 6 6
0:0098
0:0096
0:0096
0:0174
0:01743 7 7 7 7 7 7 7 7Corresponding final bending moment diagram is presented in Fig.11.24f.
Example 11.5.Design diagram of the uniform three-span continuous beam is pre-
sented in Fig.11.25a. Construct the influence lines for bending moments at the
supportsBandC(sections 6 and 12, respectively).
Solution.Each span of the beam is divided in equal portions and specified sections
are numerated (0–18). Next we needto show the displacement-load (Z-P)andS-e
diagrams (Fig.11.25a). Unknown momentsS 1 ,S 2 arise at supportBandS 3 ,S 4 at
supportC.
Static matrix TheZ-PandS-ediagrams allow us to constructing the following
equilibrium equations:
P 1 DS 1 CS 2
P 2 DS 3 CS 4so the static matrix of the structure is
A.24/D
1100
0011Stiffness matrix Stiffness matrices for each finite element are
k 1 DEI
lŒ3 ; k 2 DEI
l
42
24; k 3 DEI
lŒ3 :Stiffness matrix of all structure in local coordinates and intermediate complexkAQ Tare
kQDEI
l2
6
6
43000
0420
0240
00033
7
7
5 ;
kAQ TDEI
l2
6
6
43000
0420
0240
00033
7
7
5 2
6
6
410
10
01
013
7
7
5 DEI
l2
6
6
430
42
24
033
7
7
5