Advanced Methods of Structural Analysis

(Jacob Rumans) #1

412 11 Matrix Stiffness Method


Thus, the static matrix becomes


A.56/D

2 6 6 6 6 6 6 6 4
0  10 0:707 0 0
0000:70710
1000:70700
00 0:707 0  10
0 0 0:707 0 0 1

3 7 7 7 7 7 7 7 5

The stiffnesses of each member in local coordinates are

k 1 D

EA
l 1

D

EA
d

Œ1I k 2 Dk 5 Dk 6 Dk 1 D

EA
d

Œ1I

k 3 Dk 4 D
EA
d

p
2

Œ1D

EA
d

Œ0:707 :

So stiffness matrix of all structure in local coordinates is


kQDEA
d

2 6 6 6 6 6 6 6 4
10 0 0 00
01 0 0 00
0 0 0:707 0 0 0
0000:70700
00 0 0 10
00 0 0 01

3 7 7 7 7 7 7 7 5

Stiffness matrix of all structure in global coordinates is


KDAkAQ
T
D

EA
d

2 6 6 6 6 4
1:3534 0:3534 0:3534 0 0
0:3534 1:3534 0:3534  10
0:3534 0:3534 1:3534 0 0
0  1 0 1:3534 0:3534
000 0:3534 1:3534

3 7 7 7 7 5

Inverse matrix may be calculated by computer using a standard program. This
matrix is


K^1 D

d
EA

2 6 6 6 6 6 4
0:8965 0:5 0:1035 0:3965 0:1035
0:5 2:4149 0:5 1:9149 0:5
0:1035 0:5 0:89655 0:3965 0:1035
0:3965 1:9149 0:3965 2:313 0:6035
0:1035 0:5 0:1035 0:6035 0:8965

3 7 7 7 7 7 5
Free download pdf