Advanced Methods of Structural Analysis

(Jacob Rumans) #1

416 11 Matrix Stiffness Method


EI
ll

q

(^012)
a P
EI
ll
0 1 2
D
c
EI
ll
0 1 2
b q
Fig. P11.1
Ans:.a/Z 1 D
ql^3
56 EI
;M 1 D
ql^2
14


C

I.b/Z 1 D
ql^3
84 EI
;M 1 D
ql^2
28
I
.c/Z 1 D
3P l^2
112 EI
:
11.2.The uniform three-span beam with different spans is subjected to uniformly
distributed loadq(Fig. P11.2). The flexural rigidity of the beam isEI. Determine the
angle of rotation at support 1 and the bending moments at specified points. Compare
the result with data in TableA.12.
EI
l 1 =1.2l 2 l 2 l 3 =0.6l 2
q
(^012)
Fig. P11.2
Ans.M 1 D0:0734ql 12
11.3.The uniform three-span beam with equal spanslis subjected to the settlement
of support 1 as shown in Fig. P.11.3. The flexural rigidity of the beam isEI. Deter-
mine the angle of rotation at support 1 and the bending moments at specified points.
Compare with data at the Table A18.
EI
(^012) D
l
Fig. P11.3
Ans.M 1 D3:6
EI
l^2
; M 2 D2:4
EI
l^2

11.4.Design diagram of the uniform two-span continuous beam is presented in
Fig.P11.4. Construct the influence line for angle of rotation and bending moment
at the supportB(section 6). Compare with data at the TableA.9

Free download pdf