464 13 Stability of Elastic Systems
Unknown parametersC 1 ;C 2 ,andfmay be determined using the following bound-
ary conditions:
.1/ y .0/D 0 I .2/ y^0 .0/DI .3/ y .l /Df
1.The first boundary condition leads to equation
C 1 Cf
k 1 l
N
1
D0:
2.At pointA.xDyD0/the reactive moment equalsMADf.k 1 lP/, thus the
angle of rotation atAis
'D
MA
k 2
D
f
k 2
.k 1 lP/;
so the second boundary condition leads to the following equation
C 2 nf
k 1
P
C
k 1 lP
k 2
D0:
3.The third boundary condition leads to the following equation
C 1 cosnlCC 2 sinnlD0:
Conditions 1–3 may be rewritten in the form of the homogeneous algebraic equa-
tions with respect to unknownsC 1 ;C 2 ,andf. Equation for critical load is presented
as determinant from coefficients at these unknowns, i.e.,
DD
ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ
10
k 1 l
P
1
0n
k 1
P
C
k 1 lP
k 2
cosnl sinnl 0
ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ
D0or
DD
ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ
10
k 1 l
P
1
0n
k 1
P
C
k 1 lP
k 2
1 tannl 0
ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ
D 0
This equation may be rewritten as the transcendental equation with respect to pa-
rametern
tannlDnl
k 1 l
n^2 EI
1
k 1 l
n^2 EI
C
k 1 ln^2 EI
l
k 2
:
For given parametersl;EI;k 1 andk 2 of the structure, solution of this equation
leads to parameternof critical load. The critical load isPcrDn^2 EI.Table13.1