478 13 Stability of Elastic Systems
Stability equation in general and expanded forms are
ˇ
ˇ
ˇ
ˇ
r 11 r 12
r 21 r 22
ˇ
ˇ
ˇ
ˇD^0
4
' 2 . /C
1
ˇ
' 2 . /Ck' 2 . 2 /C
1
ˇ
' 32 . /D0:
Let ̨D3; ˇD1; kD 4. In this case, 2 Dand stability equation becomes
4Œ' 2 . /C1Œ5' 2 . /C1' 32 . /D0:
The root of this equation isD4:5307. The critical load is
PcrD
^2 EI
h^2
D
4:5307^2 EI
h^2
:
Example 13.5.The frame in Fig.13.16a is loaded by two forces at the joints. De-
rive the stability equation and find the critical loadP.
h=10m
l=5m
P 1.4P
EI EI
2 EI
Primary system
12
i=0.4EI
3 4
i=0.1EI
ab
r 12
r 22
M 2
Z 2 = 1
Z 2 = 1
M 31 M 42
M (^13) R 2
R 1
M 13 = 4 ij 2 (u) = 0. 4 EIj 2 (u) M^13 =^6 ij^4 (u) = 0.^6 EIj^4 (u)
12 i
l^2
R 1 = h 2 (u) = 0. 12 EIh 2 (u)
3 i
l^2
R 2 = h 1 (1.1832u) = 0. 003 EIh 1 (1.1832u)
R = 6 ij 4 (u) = 0. 6 EIj 4 (u)
r 11 Z 1 = 1
3 i=1.2EI
r 21
M 1
M 13
M 31
R
R
M 13
M 31
R
R
cd
Fig. 13.16 (a, b) Design diagram of the frame and primary system. (c, d) Unit bending moment
diagrams