492 13 Stability of Elastic Systems
13.6.1 Double Integration Method..................................
Figure13.22shows a simply supported beam subjected to lateral forceFand com-
pressed forceP. We need to derive the expressions for deflection and internal forces.
Fig. 13.22 Simply supported
beam subjected to
compressive axial loadPand
lateral loadF
P P
l
c
x
y
x
RA RB
ABC
F
y
Differential equation of elastic curve of the beam for left and right parts (portions
1 and 2, respectively) may be written as
EI
d^2 y 1
dx^2
DPy 1 RAxDPy
Fc
l
x; xlc;
EI
d^2 y 2
dx^2
DPy 2 RB.lx/DPy
F.lc/
l
.lx/ ; x > lc:
(13.30)
General solution of these equations is
y 1 DC 1 cosnxCD 1 sinnx
Fc
Pl
x: (13.31)
y 2 DC 2 cosnxCD 2 sinnx
F
Pl
.lc/ .lx/ ; (13.32)
where
nD
r
P
EI
is parameter of compressed loadP.
At the pointsA.x D0/andB.xDl/the displacementyis zero. Equations
(13.31)and(13.32) lead toC 1 D 0 andC 2 DD 2 tannl. Therefore, expressions
for displacements within the left and right portions are
y 1 DD 1 sinnx
Fc
Pl
x;
y 2 DD 2 tannlcosnxCD 2 sinnx
F
Pl
.lc/ .lx/ : (13.33)
For calculation of unknown coefficientsD 1 andD 2 we can use the following
conditions at the pointC:
y 1 Dy 2 and
dy 1
dx
D
dy 2
dx
: