13.6 Compressed Rods with Lateral Loading 497
SinceQ 0 D0; M 0 D 0 ,then(13.37) become
y.x/Dy 0 C 0
sinnx
n
C
F
n^3 EI
.nxsinnx/I
.x/D 0 cosnxC
F
n^2 EI
.1cosnx/ :
(13.39)
These equations contain two unknown parameters. They are 0 andy 0. Boundary
conditions are:
1.AtxDl(supportB) the slope of elastic curveD 0 ,so
.l/D 0 cosnlC
F
n^2 EI
.1cosnl/D0;
which leads immediately to the slope at the free end
0 D
F
n^2 EI
1 cosnl
cosnl
D
Fl^2
2 EI
2.1cos/
^2 cos
;DnlDl
r
P
EI
: (13.40)
2.AtxDlthe vertical displacementyD 0 ,so
y.l/Dy 0 C 0
sinnl
n
C
F
n^3 EI
.nlsinnl/D0:
Taking into account (13.40), the vertical displacement at the free end becomes
y 0 D
Fl^2
^2 EI
1 cos
cos
sin
n
F
n^3 EI
.sin/
D
Fl^3
^3 EI
1 cos
cos
sin.sin/
D
Fl^3
3 EI
3.tan/
^3
D
Fl^3
3 EI
'y:
(13.41)
If a beam is subjected to lateral forceFonly, then a transversal displacement at
the free end equalsFl^3 =3EI. However, if additional axial forcePacts then the
factor
'yD
3.tan/
^3
must be included.
3.The moment at clamped support equals
M.l/D 0 EInsinnlCMD
Fl^2
^2 EI
1 cos
cos
EInsin
F
n
sinDFl
tan
DFl'M:
(13.42)