508 13 Stability of Elastic Systems
l 2P
k
l 1EIFig. P13.10
Ans. sinnl 1 sinnl 2 Dnlsinnl
l 1 l 2
l^2P
kl
;nDr
P
EI
For problems 13.11 through 13.15, it is recommended to apply the Displacement
method. All stability functions 1 ; 2 ; :::are presented in Table A25.
13.11.Design diagram of the continuous beam is presented in Fig. P13.11. Derive
the equation for critical load in term of parameter ̨. Consider a special case for
̨D0:5.
EI Pl 1 =aL l 2 =(1−a)L
LFig. P13.11
Ans.4
̨' 2. ̨ 0 /C3
1 ̨' 1 ..1 ̨/ 0 /D0; 1 Dl 1r
P
EID ̨Lr
P
EID ̨ 0 ;2 D.1 ̨/ L
r
P
EID 0 .1 ̨/13.12.Two-span beam of spansl 1 andl 2 Dˇl 1 is subjected to axial forcesPand
̨P(Fig. P13.12). The flexural rigidity for the left and right spans areEIandkEI.
Derive the equation for critical load in term of parameters ̨; ˇandk. Consider the
special cases: a) ̨D3; ˇD 1 ,kD 4 Iand b) ̨D0; kD1; ˇD 1. Explain
obtained results.
P
EI
l 1 l 2 =bl 1aP
kEIFig. P13.12
Ans.' 1 . 1 /Ck
ˇ' 1 . 2 / D 0 , 1 D l 1r
P
EI; 2 D l 2r
PC ̨P
kEID1 ˇ
r
1 C ̨
k