Advanced Methods of Structural Analysis

(Jacob Rumans) #1

524 14 Dynamics of Elastic Systems


Let
D

1
ı 0 m!^2

D

6 EI
m!^2 l^3

:

In this case equation (a) may be rewritten

.13/ A 1 C12A 2 D0;
12A 1 C.16/ A 2 D0:
(b)

Frequency equation becomes

DD


13 12
12 16 

D.13/ .16/ 144 D0:

Roots indescending orderare 1 D26:593I 2 D2:4066
Eigenfrequenciesin increasing orderare

! 1 D

s
6 EI
 1 ml^3

D0:4750

r
EI
ml^3

;! 2 D

s
6 EI
 2 ml^3

D1:5789

r
EI
ml^3

:

Mode shape vibration may be determined on the basis of equations (b).
For first mode. 1 D26:593/ratio of amplitudes are

A 2
A 1

D

13 
12

D

13 26:593
12

D1:1328;

A 2
A 1

D
12
16 

D

12
16 26:593

D1:1328:

Assume thatA 1 D 1 , so the first eigenvector®becomes


'D
' 11 ' 21

̆T
D
1 1:1328

̆T

For second mode. 2 D2:4066/ratio of amplitudes are

A 2
A 1

D

13 
12

D

13 2:4066
12

D0:8828

A 2
A 1

D

12
16 

D

12
16 2:4066

D0:8828

The modal matrixˆis then defined as

ˆD


11
1:1328 0:8828

:

Corresponding mode shapes of vibration are shown in Fig.14.8b.

Free download pdf