524 14 Dynamics of Elastic Systems
Let
D1
ı 0 m!^2D6 EI
m!^2 l^3:In this case equation (a) may be rewritten.13/ A 1 C12A 2 D0;
12A 1 C.16/ A 2 D0:
(b)Frequency equation becomesDD
13 12
12 16 D.13/ .16/ 144 D0:Roots indescending orderare 1 D26:593I 2 D2:4066
Eigenfrequenciesin increasing orderare! 1 Ds
6 EI
1 ml^3D0:4750r
EI
ml^3;! 2 Ds
6 EI
2 ml^3D1:5789r
EI
ml^3:Mode shape vibration may be determined on the basis of equations (b).
For first mode. 1 D26:593/ratio of amplitudes areA 2
A 1D13
12D13 26:593
12D1:1328;A 2
A 1D
12
16 D12
16 26:593D1:1328:Assume thatA 1 D 1 , so the first eigenvector®becomes
'D
' 11 ' 21̆T
D
1 1:1328̆TFor second mode. 2 D2:4066/ratio of amplitudes areA 2
A 1D13
12D13 2:4066
12D0:8828A 2
A 1D12
16 D12
16 2:4066D0:8828The modal matrixˆis then defined asˆD
11
1:1328 0:8828:Corresponding mode shapes of vibration are shown in Fig.14.8b.