14.2 Free Vibrations of Systems with Finite Number Degrees of Freedom: Force Method 529
Frequencies of the free vibration in increasing order
!^21 D
1
1 mı 0
D
768
31:5563
EI
ml^3
D24:337
EI
ml^3
!! 1 D4:9333
r
EI
ml^3
;
!^22 D
1
2 mı 0
D
768
2:0
EI
ml^3
D 384
EI
ml^3
!! 2 D19:5959
r
EI
ml^3
;
!^23 D
1
3 mı 0
D
768
0:44365
EI
ml^3
D1731:09
EI
ml^3
!! 3 D41:6064
r
EI
ml^3
:
(d)
For each i-th eigenvalue, the set of equation (b) for calculation of amplitudes is
.9i/A 1 C11A 2 C7A 3 D0;
11A 1 C.16i/A 2 C11A 3 D0;
7A 1 C11A 2 C.9i/A 3 D0:
(e)
Equations (e) divide byA 1 .Let 2 DA 2 =A 1 ; 3 DA 3 =A 1.
Equations for modes become
.9i/C112iC73iD0;
11 C.16i/2iC113iD0;
7 C112iC.9i/3iD0:
(f)
AssumingA 1 D 1 we can calculate 2 and 3 for each calculated eigenvalue.
For their calculation we can consider set ofanytwo equations.
1.Eigenvalue 1 D31:5563
.931:5563/C11 2 C7 3 D0;
11 C.1631:5563/ 2 C11 3 D0:
Solution of these equations is 2 D 1:4142; 3 D 1:0. Therefore, the first
(principal) mode is defined asy11;y 21 D
p
2 y 11 ;y 31 Dy 11. If we assume that
y 11 D 1 , then the eigenvector® 1 which corresponds to the frequency! 1 is
® 1 D
1:0
p
21
̆T
.
Corresponding mode shape vibration is shown in Fig.14.10c.
1 D31:5563
! 1 D4:9333
s
EI
ml^3
Note, that substitution of 2 and 3 into third equation (f) leads to the identity.
2.Eigenvalue 2 D2:0. In this case
.92:0/C11 2 C7 3 D0;
11 C.162:0/ 2 C11 3 D0: