546 14 Dynamics of Elastic Systems
Fundamental data for one-span uniform beams with classical boundary condi-
tions are presented in Table A.26. This table contains the frequency equation, and
the first, second and third eigenvalues. For the nodal points of the mode shapes of a
free vibration, the origin is placed on the left end of the beam.
Problems.......................................................................
14.1.Statically determinate beam carried one lumped mass. Determine the fre-
quency of free vibration.
M
bl ac
M
l2 EI
lM EI
a
EI, la bFig. P14.1
Ans. (a)!Dr
3lEI
a^2 b^2 M;(c)!Dr
2 EI
3l^3 M.14.2.Statically indeterminate beamcarried one lumped mass (Fig.P14.2). Deter-
mine the frequency of free vibration.
Mb aEI Ml/ 2EIl/ 2abFig. P14.2
Ans. (a)!Ds
12 EI
a^2 .3bC4a/ M;(b)!Dr
768 EI
7l^3 M.14.3.Symmetrical frame with absolutely rigid cross bar of total massMis shown
in Fig.P14.3. Find the frequency of free horizontal vibration.
EI=∞, Mh EIFig. P14.3
Ans.!Dr
24 EI
h^3 M