Appendix 583
Ta b l e A. 2 4 Special functions for stability analysis
Functions Form 1 Form 2 Maclaurin series
' 1 . /
^2 tan
3.tan/
1
3^2 sin
sincos
1 2
15
4
525
C' 2 . /
.tan/
8 tan
tan
2
2
1
4sin^2 cos
2 2 cossin
1 2
30
114
25200
C' 3 . /
.sin/
4 sin
tan
2
2
1
2.sin/
2 2 cossin
1 C2
60 C13^4
25200 C' 4 . / ' 1
2 1
6^2 sin
2 sincos
1 2
60
4
84000
C1 . /
^3
3.tan/
1
3^3 cos
sincos
1 22
5
4
525
C2 . / (^1)
2
1
12
^3 .1Ccos/
2 sincos
1
^2
10
^4
8400
C
sin
sin
sin
1 C
^2
6
C
7^4
360
C
tan
tan
cos
sin
1
^2
3
^4
45
C
tan tan
sin
cos
0 C^2 C
^4
3
C
Numerical values of these functions in terms of dimensionless parameterare presented in
Ta b l eA.25
Ta b l e A. 2 5 Special functions for stability analysis by Displacement method
' 1 . / ' 2 . / ' 3 . / ' 4 . /
1 . /
2 . /
0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 0.9973 0.9980 1.0009 0.9992 0.9840 0.9959
0.4 0.9895 0.9945 1.0026 0.9973 0.9362 0.9840
0.6 0.9756 0.9881 1.0061 0.9941 0.8557 0.9641
0.8 0.9566 0.9787 1.0111 0.9895 0.7432 0.9362
1.0 0.9313 0.9662 1.0172 0.9832 0.5980 0.8999
1.1 0.9164 0.9590 1.0209 0.9798 0.5131 0.8789
1.2 0.8998 0.9511 1.0251 0.9757 0.4198 0.8557
1.3 0.8814 0.9424 1.0298 0.9715 0.3181 0.8307
1.4 0.8613 0.9329 1.0348 0.9669 0.2080 0.8035
1.5 0.8393 0.9226 1.0403 0.9619 0.0893 0.7743
=2 0.8225 0.9149 1.0445 0.9620 0.0000 0.7525
1.6 0.8153 0.9116 1.0463 0.9566 0:0380 0.7432
1.7 0.7891 0.8998 1.0529 0.9509 0:1742 0.7100
1.8 0.7609 0.8871 1.0600 0.9448 0:3191 0.6747
1.9 0.7297 0.8735 1.0676 0.9382 0:4736 0.6374
2.0 0.6961 0.8590 1.0760 0.9313 0:6372 0.5980
2.1 0.6597 0.8437 1.0850 0.9240 0:8103 0.5565
2.2 0.6202 0.8273 1.0946 0.9164 0:9931 0.5131
(continued)