3.5 Special Types of Trusses 71
Ta b l e 3. 1
Computation of internal force in substitute bar
State
Design diagram
Free-body diagram
Equilibrium equations
P
-loading
Substituted system in
Fig.
3.25
b subjected to
given load
P.
#/
;inthis
case
R
A
D
0:5P.
"
/
RA
=0.5
P
1
K
1
N
1 P
A
L
30
°
N
1P
!
X
M
leftK
D
0
R
3dA
C
N
1P
cos
30
ı
2d
C
N
1P
sin
30
ı
d
D
0
N
1P
.2
cos
30
ı
C
sin
30
ı/
D
3R
A
N
1P
D
3P =2
p 2
3=2
C
1=2
D
0:672P
C
FP
N
1 P
N
2 P
30
°
P
X
D
0
!
N
1P
D
N
2P
D
N
P
Y
D
0
!
F
P
C
2N
sin
30
ı
D
0
F
P
D
2N
sin
30
ı
D
0:672P
X
-loadingC
Substituted system in
Fig.
3.25
b subjected to unit
force
X
C
D
1(
"/
;inthis
case
R
A
=0.5(
#/
RA
=0.5
1
K
1
N
1 X
A
L
30
°
N
1X
!
X
M
leftK
D
0
R
3dA
C
N
1X
cos
30
ı
2d
C
N
1X
sin
30
ı
d
D
0
N
1X
.2
cos
30
ı
C
sin
30
ı/
D
3R
A
N
1X
D
3
1=2
p 2
3
=
2
C
1=2
D
0:672
F
N
1X
N
2X
C X
=C
1
30
°
P
X
D
0
!
N
1X
D
N
2X
D
N
X
P
Y
D
0
!
F
C
2N
X
sin
30
ı
C
1
D
0
F
D
2N
X
sin
30
ı
1
D
0:328