92 Chapter 3 / Mathematical Modeling of Mechanical Systems and Electrical SystemsA–3–6. Obtain the transfer function of the op-amp circuit shown in Figure 3–26.Solution.The voltage at point AisThe Laplace-transformed version of this last equation isThe voltage at point BisSince and we must have ThusHenceA–3–7. Obtain the transfer function Eo(s)/Ei(s)of the op-amp system shown in Figure 3–27 in terms of
complex impedances Z 1 ,Z 2 ,Z 3 , and Z 4. Using the equation derived, obtain the transfer function
Eo(s)/Ei(s)of the op-amp system shown in Figure 3–26.Solution.From Figure 3–27, we findEi(s)-EA(s)
Z 3=
EA(s)-Eo(s)
Z 4Eo(s)
Ei(s)=-
R 2 Cs- 1
R 2 Cs+ 1=-
s-1
R 2 C
s+1
R 2 C
1
2
CEi(s)+Eo(s)D=1
R 2 Cs+ 1Ei(s)CEB(s)-EA(s)DK=Eo(s) K1, EA(s)=EB(s).EB(s)=1
CsR 2 +1
CsEi(s)=1
R 2 Cs+ 1Ei(s)EA(s)=1
2
CEi(s)+Eo(s)DeA=1
2
Aei-eoB+eoEo(s)Ei(s)+CABR 1R 1R 2eieoFigure 3–26
Operational-
amplifier circuit.Openmirrors.com