Modern Control Engineering

(Chris Devlin) #1

Example Problems and Solutions 689


(9–70)

Solution.Equation (9–68) can be written as


which can be modified to


(9–71)

where


Let us rewrite this last equation in the following form:


From this last equation, the following two equations may be obtained:


(9–72)

(9–73)

Now define state variables as follows:


Then, clearly,


sXn- 1 (s)=Xn(s)







sX 2 (s)=X 3 (s)

sX 1 (s)=X 2 (s)

Xn(s)=sn-^1 Q(s)

Xn- 1 (s)=sn-^2 Q(s)







X 2 (s)=sQ(s)

X 1 (s)=Q(s)

+Abn-an b 0 BQ(s)

Yˆ(s)=Ab 1 - a 1 b 0 Bsn-^1 Q(s)+p+Abn- 1 - an- 1 b 0 BsQ(s)


snQ(s)=-a 1 sn-^1 Q(s)-p-an- 1 sQ(s)-an Q(s)+U(s)

=

U(s)
sn+a 1 sn-^1 +p+an- 1 s+an

=Q(s)

Yˆ(s)


Ab 1 - a 1 b 0 Bsn-^1 +p+Abn- 1 - an- 1 b 0 Bs+Abn-an b 0 B

Yˆ(s)=


Ab 1 - a 1 b 0 Bsn-^1 +p+Abn- 1 - an- 1 b 0 Bs+Abn-an b 0 B
sn+a 1 sn-^1 +p+an- 1 s+an

U(s)

Y(s)=b 0 U(s)+Yˆ(s)


Y(s)
U(s)

=b 0 +

Ab 1 - a 1 b 0 Bsn-^1 +p+Abn- 1 - an- 1 b 0 Bs+Abn-an b 0 B
sn+a 1 sn-^1 +p+an- 1 s+an

y =Cbn-an b 0 bn- 1 - an- 1 b 0 pb 1 - a 1 b 0 DF


x 1
x 2



xn

V +b 0 u

Free download pdf