Modern Control Engineering

(Chris Devlin) #1
708 Chapter 9 / Control Systems Analysis in State Space

Similarly, if

then

A–9–12. Consider the following polynomial in lof degree m-1, where we assume l 1 ,l 2 ,p,lmto be
distinct:

wherek=1,2,p,m. Notice that

Then the polynomial f(l)of degree m-1,

takes on the values fAlkBat the points lk. This last equation is commonly called Lagrange’s
interpolation formula. The polynomial f(l)of degree m-1is determined from mindependent
data fAl 1 B, fAl 2 B, p, fAlmB. That is, the polynomial f(l) passes through mpoints
fAl 1 B,fAl 2 B,p,fAlmB. Since f(l)is a polynomial of degree m-1, it is uniquely determined.
Any other representations of the polynomial of degree m-1can be reduced to the Lagrange
polynomialf(l).

= a

m

k= 1

fAlkB

Al-l 1 BpAl-lk- 1 BAl-lk+ 1 BpAl-lmB
Alk-l 1 BpAlk-lk- 1 BAlk-lk+ 1 BpAlk-lmB

f(l)= a

m

k= 1

fAlkBpk(l)

pkAliB= b

1,

0,

ifi=k
ifiZk

pk(l)=

Al-l 1 BpAl-lk- 1 BAl-lk+ 1 BpAl-lmB
Alk-l 1 BpAlk-lk- 1 BAlk-lk+ 1 BpAlk-lmB

eJt= G


el^1 t
0
0

0

tel^1 t
el^1 t
0

1
2 t

(^2) el 1 t
tel^1 t
el^1 t
el^4 t
0
tel^4 t
el^4 t
el^6 t
0


0

0

el^7 t

W


J=G


l 1
0
0

0

1

l 1
0

0

1

l 1
l 4
0

1

l 4
l 6

0

l 7

W


Openmirrors.com

Free download pdf