Modern Control Engineering

(Chris Devlin) #1
780 Chapter 10 / Control Systems Design in State Space

MATLAB Program 10–12


% Determination of transfer function of observer controller


A = [0 1 0;0 0 1;0 -24 -10];


B = [0;10;-80];


Aaa = 0; Aab = [1 0]; Aba = [0;0]; Abb = [0 1;-24 -10];


Ba = 0; Bb = [10;-80];


Ka = 1.25; Kb = [1.25 0.19375];


Ke = [10;-24];


Ahat = Abb - Ke*Aab;


Bhat = AhatKe + Aba - KeAaa;


Fhat = Bb - Ke*Ba;


Atilde = Ahat - Fhat*Kb;


Btilde = Bhat - Fhat(Ka + KbKe);


Ctilde = -Kb;


Dtilde = -(Ka + Kb*Ke);


[num,den] = ss2tf(Atilde, Btilde, -Ctilde, -Dtilde)


num =


9.1000 73.5000 125.0000


den =


1.0000 17.0000 -30.0000


In the program, matrices JandLrepresent the desired closed-loop poles for pole place-


ment and the desired poles for the observer, respectively. The matrices KandKeare


obtained as


Design step 4: We shall determine the transfer function of the observer controller.


Referring to Equation (10–108), the transfer function of the observer controller can be


given by


We shall use MATLAB to calculate the transfer function of the observer controller.


MATLAB Program 10–12 produces this transfer function. The result is


Define the system with this observer controller as System 1. Figure 10–20 shows the


block diagram of System 1.


=


9.1(s+5.6425)(s+2.4344)


(s+18.6119)(s-1.6119)


Gc(s)=


9.1s^2 +73.5s+ 125


s^2 +17s- 30


Gc(s)=


U(s)


- Y(s)


=


num


den


=-CC





As I-A





B-^1 B





+D





D


Ke= B


10


- 24


R


K=[1.25 1.25 0.19375]


Openmirrors.com

Free download pdf