Modern Control Engineering

(Chris Devlin) #1
782 Chapter 10 / Control Systems Design in State Space

MATLAB Program 10–14


% Determination of transfer function of observer controller.


A = [0 1 0;0 0 1;0 -24 -10];


B = [0;10;-80];


Aaa = 0; Aab = [1 0]; Aba = [0;0]; Abb = [0 1;-24 -10];


Ba = 0; Bb = [10;-80];


Ka = 1.25; Kb = [1.25 0.19375];


Ke = [-1;6.25];


Ahat = Abb - Ke*Aab;


Bhat = AhatKe + Aba - KeAaa;


Fhat = Bb - Ke*Ba;


Atilde = Ahat - Fhat*Kb;


Btilde = Bhat - Fhat(Ka + KbKe);


Ctilde = -Kb;


Dtilde = -(Ka + Kb*Ke);


[num,den] = ss2tf(Atilde,Btilde,-Ctilde,-Dtilde)


num =


1.2109 11.2125 25.3125


den =


1.0000 6.0000 2.1406


Next, we shall obtain the transfer function of the observer controller. MATLAB


Program 10–14 produces this transfer function as follows:


=


1.2109(s+5.3582)(s+3.9012)


(s+5.619)(s+0.381)


Gc(s)=


1.2109s^2 +11.2125s+25.3125


s^2 +6s+2.1406


Notice that this is a stable controller. Define the system with this observer controller as


System 2. We shall proceed to obtain the response of System 2 to the given initial


condition:


By substituting into the state-space equation for the plant, we obtain


=Ax-BKbx- B (10–110)


0


e


Rr =Ax-BKx+BCKa KbDB


0


e


R


x



=Ax-BK x =Ax-BKB


xa


xb


R =Ax-BKB


xa


xb-e


R


u=-Kx


x(0)=C


1


0


0


S, e(0)= B


1


0


R


Openmirrors.com

Free download pdf