Modern Control Engineering

(Chris Devlin) #1
788 Chapter 10 / Control Systems Design in State Space

where


Next, we choose the desired closed-loop poles for pole placement at


s=–1+j, s=–1-j, s=–8


and the desired observer poles at


s=–4, s=–4


The state feedback gain matrix Kand the observer gain matrix Kecan be obtained as


follows:


See MATLAB Program 10–16.


Ke= B


8


15


R


K=[16 17 10]


A= C


0


0


0


1


0


- 1


0


1


0


S, B= C


0


0


1


S, C=[1 0 0]


MATLAB Program 10–16


A = [0 1 0;0 0 1;0 -1 0];


B = [0;0;1];


J = [-1+j -1-j -8];


K = acker(A,B,J)


K =


16 17 10


Aab = [1 0];


Abb = [0 1;-1 0];


L = [-4 -4];


Ke = acker(Abb',Aab',L)'


Ke =


8


15


The transfer function of the observer controller is obtained by use of MATLAB


Program 10–17. The result is


=


302(s+0.5017+j0.772)(s+0.5017-j0.772)


(s+ 9 +j5.6569)(s+ 9 - j5.6569)


Gc(s)=


302s^2 +303s+ 256


s^2 +18s+ 113


Openmirrors.com

Free download pdf