Modern Control Engineering

(Chris Devlin) #1
802 Chapter 10 / Control Systems Design in State Space

Next, let us obtain the response xof the regulator system to the initial condition x(0), where

With state feedback u=–Kx, the state equation for the system becomes

Then the system, or sys, can be given by

sys = ss(A-B*K, eye(3), eye(3), eye(3))


MATLAB Program 10–21 produces the response to the given initial condition. The response
curves are shown in Figure 10–38.

x# =Ax+Bu=(A-BK) x

x(0)= C


1

0

0

S


EXAMPLE 10–13 Consider the system shown in Figure 10–39. The plant is defined by the following state-space


equations:

where

The control signal uis given by

u=k 1 Ar-x 1 B-Ak 2 x 2 +k 3 x 3 B=k 1 r-Ak 1 x 1 +k 2 x 2 +k 3 x 3 B

A= C


0

0

0

1

0

- 2

0

1

- 3

S, B= C


0

0

1

S, C=[ 1 0 0 ], D=[ 0 ]


y=Cx+Du

x# =Ax+Bu

MATLAB Program 10–21


% Response to initial condition.


A = [0 1 0;0 0 1;-35 -27 -9];


B = [0;0;1];


K = [0.0143 0.1107 0.0676];


sys = ss(A-B*K, eye(3),eye(3),eye(3));


t = 0:0.01:8;


x = initial(sys,[1;0;0],t);


x1 = [1 0 0]*x';


x2 = [0 1 0]*x';


X3 = [0 0 1]*x';


subplot(2,2,1); plot(t,x1); grid


xlabel('t (sec)'); ylabel('x1')


subplot(2,2,2); plot(t,x2); grid


xlabel('t (sec)'); ylabel('x2)


subplot(2,2,3); plot(t,x3); grid


xlabel('t (sec)'); ylabel('x3')


Openmirrors.com

Free download pdf