802 Chapter 10 / Control Systems Design in State SpaceNext, let us obtain the response xof the regulator system to the initial condition x(0), whereWith state feedback u=–Kx, the state equation for the system becomesThen the system, or sys, can be given bysys = ss(A-B*K, eye(3), eye(3), eye(3))
MATLAB Program 10–21 produces the response to the given initial condition. The response
curves are shown in Figure 10–38.x# =Ax+Bu=(A-BK) xx(0)= C
1
0
0
S
EXAMPLE 10–13 Consider the system shown in Figure 10–39. The plant is defined by the following state-space
equations:whereThe control signal uis given byu=k 1 Ar-x 1 B-Ak 2 x 2 +k 3 x 3 B=k 1 r-Ak 1 x 1 +k 2 x 2 +k 3 x 3 BA= C
0
0
0
1
0
- 2
0
1
- 3
S, B= C
0
0
1
S, C=[ 1 0 0 ], D=[ 0 ]
y=Cx+Dux# =Ax+BuMATLAB Program 10–21
% Response to initial condition.
A = [0 1 0;0 0 1;-35 -27 -9];
B = [0;0;1];
K = [0.0143 0.1107 0.0676];
sys = ss(A-B*K, eye(3),eye(3),eye(3));
t = 0:0.01:8;
x = initial(sys,[1;0;0],t);
x1 = [1 0 0]*x';
x2 = [0 1 0]*x';
X3 = [0 0 1]*x';
subplot(2,2,1); plot(t,x1); grid
xlabel('t (sec)'); ylabel('x1')
subplot(2,2,2); plot(t,x2); grid
xlabel('t (sec)'); ylabel('x2)
subplot(2,2,3); plot(t,x3); grid
xlabel('t (sec)'); ylabel('x3')
Openmirrors.com