822 Chapter 10 / Control Systems Design in State Spaceandwhere the ai’s are coefficients of the characteristic polynomialDefine alsoShow thatSolution.Let us consider the case where n=3.We shall show that(10–143)
Referring to Problem A–10–2, we haveHence, Equation (10–143) can be rewritten asTherefore, we need to show that(10–144)
The left-hand side of Equation (10–144) isC
0
1
0
0
0
1
- a 3
- a 2
- a 1
SC
a 2
a 1
1a 1
1
01
0
0
S = C
- a 3
0
0
0
a 1
10
1
0
S
C
0
1
0
0
0
1
- a 3
- a 2
- a 1
S W=WC
0
0
- a 3
1
0
- a 2
0
1
- a 1
S
W-^1 C
0
1
0
0
0
1
- a 3
- a 2
- a 1
S W= C
0
0
- a 3
1
0
- a 2
0
1
- a 1
S
M-^1 AM= C
0
1
0
0
0
1
- a 3
- a 2
- a 1
S
T-^1 AT=(MW)-^1 A(MW)=W-^1 (M-^1 AM) W= C
0
0
- a 3
1
0
- a 2
0
1
- a 1
S
T-^1 AT= G
0 0 0
- an
1 0 0
- an- 1
0 1 0
- an- 2
p
pp
p0 0 1
- a 1
W, T-^1 B=G
0 0 0 1
W
T=MW
∑s I-A∑=sn+a 1 sn-^1 +p+an- 1 s+anW=G
an- 1
an- 2
a 1
1an- 2
an- 3
1
0p
pp
pa 1
1 0 01 0 0 0
W
Openmirrors.com