Modern Control Engineering

(Chris Devlin) #1
822 Chapter 10 / Control Systems Design in State Space

and

where the ai’s are coefficients of the characteristic polynomial

Define also

Show that

Solution.Let us consider the case where n=3.We shall show that

(10–143)

Referring to Problem A–10–2, we have

Hence, Equation (10–143) can be rewritten as

Therefore, we need to show that

(10–144)

The left-hand side of Equation (10–144) is

C


0

1

0

0

0

1


  • a 3

  • a 2

  • a 1


SC


a 2
a 1
1

a 1
1
0

1

0

0

S = C



  • a 3
    0
    0


0

a 1
1

0

1

0

S


C


0

1

0

0

0

1


  • a 3

  • a 2

  • a 1


S W=WC


0

0


  • a 3


1

0


  • a 2


0

1


  • a 1


S


W-^1 C


0

1

0

0

0

1


  • a 3

  • a 2

  • a 1


S W= C


0

0


  • a 3


1

0


  • a 2


0

1


  • a 1


S


M-^1 AM= C


0

1

0

0

0

1


  • a 3

  • a 2

  • a 1


S


T-^1 AT=(MW)-^1 A(MW)=W-^1 (M-^1 AM) W= C


0

0


  • a 3


1

0


  • a 2


0

1


  • a 1


S


T-^1 AT= G


0 0    0


  • an


1 0    0


  • an- 1


0 1    0


  • an- 2


p
p

p
p

0 0    1


  • a 1


W, T-^1 B=G


0 0    0 1

W


T=MW

∑s I-A∑=sn+a 1 sn-^1 +p+an- 1 s+an

W=G


an- 1
an- 2



a 1
1

an- 2
an- 3



1
0

p
p

p
p

a 1
1    0 0

1 0    0 0

W


Openmirrors.com

Free download pdf