824 Chapter 10 / Control Systems Design in State Spacewe haveDefinewhereThenandDefineThen the state equation becomesSinceandwe havewhich is in the controllable canonical form.A–10–5. Consider a system defined bywhereA=B
0
- 2
1
- 3
R, B= B
0
2
R, C=[ 1 0 ]
y =Cxx=Ax+BuB
xˆ
1xˆ
2R = B
0
- 1
1
- 2
RB
xˆ 1
xˆ 2
R +B
0
1
Ru
T-^1 B= B
0.5
0.5
0
0.5
RB
0
2
R = B
0
1
R
T-^1 AT= B
0.5
0.5
0
0.5
RB
1
- 4
1
- 3
RB
2
- 2
0
2
R = B
0
- 1
1
- 2
R
xˆ
=T-^1 ATxˆ+T-^1 Bu
x=Txˆ
T-^1 = B
0.5
0.5
0
0.5
R
T= B
0
2
2
- 6
RB
2
1
1
0
R = B
2
- 2
0
2
R
M= B
0
2
2
- 6
R, W=B
2
1
1
0
R
T=MW
a 1 =2, a 2 = 1
Openmirrors.com