826 Chapter 10 / Control Systems Design in State SpaceA–10–6. A regulator system has a plantDefine state variables asBy use of the state-feedback control u=–Kx, it is desired to place the closed-loop poles atObtain the necessary state-feedback gain matrix Kwith MATLAB.Solution.The state-space equations for the system becomeHence,(Note that, for the pole placement, matrices CandDdo not affect the state-feedback gain
matrixK.)
Two MATLAB programs for obtaining state-feedback gain matrix Kare given in MATLAB
Programs 10–24 and 10–25.C=[1 0 0], D=[0]
A= C
0
0
- 6
1
0
- 11
0
1
- 6
S, B= C
0
0
10
S
y =[1 0 0]C
x 1
x 2
x 3S+0u
C
x# 1
x# 2
x# 3S = C
0
0
- 6
1
0
- 11
0
1
- 6
SC
x 1
x 2
x 3S +C
0
0
10
Su
s=- 2 +j2 13 , s=- 2 - j2 13 , s=- 10
x 3 =x# 2x 2 =x# 1x 1 =yY(s)
U(s)=
10
(s+1)(s+2)(s+3)MATLAB Program 10–24
A = [0 1 0;0 0 1;-6 -11 -6];
B = [0;0;10];
J = [-2+j2sqrt(3) -2-j2sqrt(3) -10];
K = acker(A,B,J)
K =
15.4000 4.5000 0.8000
Openmirrors.com