Modern Control Engineering

(Chris Devlin) #1

Example Problems and Solutions 837


Then, the state-space equations become


Define


The state feedback gain matrix Kand observer gain matrix Kecan be obtained easily by use of
MATLAB as follows:


(See MATLAB Program 10–26.)


Ke= B


14.4

0.3

0.6

15.7

R


K=[130.4444 - 41.5556 23.1000 15.4185]


A= E


0

0

- 36

18

0

0

36

- 18

1

0

- 0.6

0.3

0

1

0.6

- 0.3

U = C


Aaa

Aba

Aab

Abb

S, B= E


0

0



1

0

U = C


Ba

Bb

S


B


y 1
y 2

R =B


1

0

0

1

0

0

0

0

RD


x 1
x 2
x 3
x 4

T


D


x# 1
x# 2
x# 3
x# 4

T =D


0

0

- 36

18

0

0

36

- 18

1

0

- 0.6

0.3

0

1

0.6

- 0.3

TD


x 1
x 2
x 3
x 4

T+ D


0

0

1

0

Tu


MATLAB Program 10–26


A = [0 0 1 0;0 0 0 1;-36 36 -0.6 0.6;18 -18 0.3 -0.3];


B = [0;0;1;0];


J = [-2+j2sqrt(3) -2-j2sqrt(3) -10 -10];


K = acker(A,B,J)


K =


130.4444 -41.5556 23.1000 15.4185


Aab = [1 0;0 1];


Abb = [-0.6 0.6;0.3 -0.3];


L = [-15 -16];


Ke = place(Abb',Aab',L)'


place: ndigits= 15


Ke =


14.4000 0.6000


0.3000 15.7000


Response to Initial Condition: Next, we obtain the response of the designed system to the given
initial condition. Since


x =B
xa
xb
R = B

y
xb

R


u=-Kx

x# =Ax+Bu
Free download pdf