Example Problems and Solutions 837
Then, the state-space equations become
Define
The state feedback gain matrix Kand observer gain matrix Kecan be obtained easily by use of
MATLAB as follows:
(See MATLAB Program 10–26.)
Ke= B
14.4
0.3
0.6
15.7
R
K=[130.4444 - 41.5556 23.1000 15.4185]
A= E
0
0
- 36
18
0
0
36
- 18
1
0
- 0.6
0.3
0
1
0.6
- 0.3
U = C
AaaAbaAabAbbS, B= E
0
0
1
0
U = C
Ba
BbS
B
y 1
y 2R =B
1
0
0
1
0
0
0
0
RD
x 1
x 2
x 3
x 4T
D
x# 1
x# 2
x# 3
x# 4T =D
0
0
- 36
18
0
0
36
- 18
1
0
- 0.6
0.3
0
1
0.6
- 0.3
TD
x 1
x 2
x 3
x 4T+ D
0
0
1
0
Tu
MATLAB Program 10–26
A = [0 0 1 0;0 0 0 1;-36 36 -0.6 0.6;18 -18 0.3 -0.3];
B = [0;0;1;0];
J = [-2+j2sqrt(3) -2-j2sqrt(3) -10 -10];
K = acker(A,B,J)
K =
130.4444 -41.5556 23.1000 15.4185
Aab = [1 0;0 1];
Abb = [-0.6 0.6;0.3 -0.3];
L = [-15 -16];
Ke = place(Abb',Aab',L)'
place: ndigits= 15
Ke =
14.4000 0.6000
0.3000 15.7000
Response to Initial Condition: Next, we obtain the response of the designed system to the given
initial condition. Since
x =B
xa
xb
R = By
xbR
u=-Kxx# =Ax+Bu