Appendix A / Laplace Transform Tables 865
1
2
3
4
5
where6
7
8
9
10
11
12
13
14
15
16
17
18 lCf(t)g(t)D=1
2 pj 3c+jqc-jqF(p)G(s-p)dplc
3t0f 1 (t-t)f 2 (t)dtd=F 1 (s)F 2 (s)
lcfa
1
abd =aF(as)
lc
1
tf(t)d =
3qsF(s)ds if limtS 0
1
tf(t) existslCtnf(t)D=(-1)ndn
dsnF(s) (n=1, 2, 3,p)
lCt^2 f(t)D=d^2
ds^2F(s)lCtf(t)D=-dF(s)
dslCf(t-a)1(t-a)D=e-asF(s) a 0
lCe-atf(t)D=F(s+a)3
q0f(t)dt=limsS 0 F(s) if
3q0f(t)dt existslc
3t0f(t)dtd=
F(s)
sl;c
3p
3f(t)(dt)nd=
F(s)
sn+ ank= 11
sn-k+^1c
3p
3f(t)(dt)kd
t= 0 ;l;c
3f(t)dtd=
F(s)
s+
1
sc
3f(t)dtd
t= 0 ;f(t)(k-1)
=dk-^1
dtk-^1f(t)l;c
dn
dtnf(t)d =snF(s)- a
nk= 1sn-kf( 0 ;)(k- 1 )l;c
d^2
dt^2f(t)d=s^2 F(s)-sf(0 ;)-f
(0 ;)
l;c
d
dtf(t)d=sF(s)-f(0 ;)
lCf 1 (t);f 2 (t)D=F 1 (s);F 2 (s)lCAf(t)D=AF(s)