Modern Control Engineering

(Chris Devlin) #1

and


=17


Hence, the inverse of Ais


In what follows, we give formulas for finding inverse matrices for the 2*2matrix


and the 33matrix. For the 22matrix


the inverse matrix is given by


For the 3*3matrix


the inverse matrix is given by


A= C


abc


def


gh i


S where@A@ Z 0


A-^1 =


1


ad-bc


c


d -b


- ca


d


A= c


ab


cd


d wheread-bcZ 0


A-^1 =


adjA


@A@


= C


3
17

6
17 -

4
17
7
17 -

3
17

2
17
1
17

2
17 -

7
17

S


@A@


878 Appendix C / Vector-Matrix Algebra

G W


`


de


gh


-


ab


gh


` `


ab


de


`



  • `


df


gi


` `


ac


gi


-


ac


df


A-^1 = `


1


@A@


`


ef


hi


-


bc


hi


` `


bc


ef


`


Note that


There are several more useful formulas available. Assume that A=n*nmatrix,


B=nmmatrix,C=mnmatrix, and D=m*mmatrix. Then


[A+BC]-^1 =A-^1 - A-^1 B[Im+CA-^1 B]-^1 CA-^1


(A-^1 )=(A)-^1


(A-^1 )¿=(A¿)-^1


(A-^1 )-^1 =A


Openmirrors.com

Free download pdf