Taking derivatives, we obtain@lnLðbÞ
@bj¼~
kYk
P^ðXkÞ1 Yk
1 P^ðXkÞ()
^PðXkÞð 1 P^ðXkÞÞXjk;which can be rewritten as
@lnLðbÞ
@bj¼~
kYkð 1 P^ðXkÞÞð 1 YkÞ^PðXkÞno
Xjkand further simplied to
@lnLðbÞ
@bj¼~
kðYkP^ðXkÞÞXjk:We can then write~
jbj
@lnLðbÞ
@bj¼~
kYk^PðXkÞ~
jbjXjk¼~
kYk^PðXkÞln^PðXkÞ
1 P^ðXkÞ!
¼~
kYk^PðXkÞlogitP^ðXkÞ:Since@lnLð
b^Þ
@bj ¼^0 for the ML estimate
b^,we
can write~
kðYk^PðXkÞÞlogitP^ðXkÞ¼ 0.It then follows that ~
kYklogitð^PðXkÞÞ¼
~
kP^ðXkÞlogitð^PðXkÞkÞ.We then replace ~
kYklogitðP^ðXkÞÞ by~
k^PðXkÞlogitðP^ðXkÞÞ in the above simplifiedformula for the deviance to obtain
DevSSðb^Þ¼ 2 ~nk¼ 1^
PðXkÞlogitðP^ðXkÞÞ
þlnð 1 P^ðXkÞÞ
:328 9. Assessing Goodness of Fit for Logistic Regression