Finally, the 20 cases that did not have either
risk factorX 1 ¼0 andX 2 ¼0 arediscordant with 2þ 48 þ 50 ¼100 noncases
andtiedwith 100 noncases.We now sum up all the above concordant and
tied pairs, respectively, to obtainw¼11,480 total concordant pairs andz¼5,420 total tied pairs.We then usew,z, andnpto calculate the area
under the ROC curve using the AUC formula,
as shown on the left.To describe how to obtain this result geometri-
cally, we first point out that with 100 cases
and 200 noncases, the total number of case/
noncase pairs (i.e., 100200) can be geomet-
rically represented by the rectangular area with
height 100 and width 200 shown at the left.A scaled-up version of the ROC curve is super-
imposed within this area. Also, the values listed
on the Y-axis (i.e., for cases) correspond to the
number of cases testing positive at the cut-
points used to plot the ROC curve. Similarly,
the values listed on the X-axis (i.e., for non-
cases) correspond to the number of noncases
testing positive at these same cut-points.EXAMPLE (continued)
WhenX 1 ¼0 andX 2 ¼0:
20 cases have lower^PðXÞthan
2 þ 48 þ 50 ¼ 100 noncases
i:e:,20 100 ¼2,000 discordantpairs20 cases and 100 noncases have same
^PðXÞ,i:e:,20 100 ¼2,000 tied pairs8
>>>
>>>
>>>
<
>>>
>>>
>>>
:total no. of concordant pairs:
w¼1,980þ7,500þ2,000¼11,480total no. of tied pairs:
z¼ 20 þ2,400þ1,000þ2,000¼5,420AUC¼
wþ 0 : 5 z
np
¼
11,480þ 0 : 5 ð5,420Þ
20,000
¼
14,190
20,000
¼ 0 : 7095Geometrical Approach for
Calculating AUC
100
80
6010CasesDiscordant + ½ tiesConcordant + ½ ties(^0250100200)
Noncases
ROC curve: scaled-up
(from 100%100% axes to 100
200 axes)
Y-axis:no. ofcases testingþ
X-axis:no. ofnoncases testingþ
362 10. Assessing Discriminatory Performance of a Binary Logistic Model