Logistic Regression: A Self-learning Text, Third Edition (Statistics in the Health Sciences)

(vip2019) #1

 Vs not in OR formula butVsin
model, so OR formula controls
confounding:


logit P(X) = a + bE + Σ gi Vi


+ E Σ dj Wj

No interaction:


alldj¼ 0 )ROR¼exp (b)
"
constant


logit P(X)¼aþbEþ~giVi
"
confounding
effects adjusted


Although the coefficients of theVterms do not
appear in the odds ratio formula, these terms
are still part of the fitted model. Thus, the odds
ratio formula not only reflects the interaction
effects in the model but also controls for the
confounding variables in the model.

In contrast, if the model contains no interac-
tion terms, then, equivalently, all thedjcoeffi-
cients are 0; the odds ratio formula thus
reduces to ROR equals to e tob, wherebis
the coefficient of the exposure variable E.
Here, theodds ratio is a fixed constant, so that
its value does not change with different values
of the independent variables. The model in this
case reduces to logit P(X) equalsaplusbtimes
Eplus the sum of the main effect terms involv-
ing theVs and contains no product terms. For
this model, we can say that e tobrepresents an
odds ratio thatadjusts for the potential con-
founding effects of the control variables C 1
throughCpdefined in terms of theVs.

As an example of the use of the odds ratio
formula for theE, V, Wmodel, we return to
the CHD study example we described earlier.
The CHD study model contained eight inde-
pendent variables. The model is restated here
as logit P(X) equalsaplusbtimes CAT plus the
sum of five main effect terms plus the sum of
two interaction terms.

The five main effect terms in this model
account for the potential confounding effects
of the variables AGE through HPT. The two
product terms account for the potential inter-
action effects of CHL and HPT with CAT.

For this example, the odds ratio formula
reduces to the expression ROR equals e to the
quantityb plus the sumd 1 times CHL plus
d 2 times HPT.

EXAMPLE
The model:
logit P (X)¼aþbCAT
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}þg^1 AGEþg^2 CHLþg^3 SMKþg^4 ECGþg^5 HPT
main effects
þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}CATðÞd 1 CHLþd 2 HPT
interaction effects

logit PðXÞ¼aþbCAT
þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}g 1 AGEþg 2 CHLþg 3 SMKþg 4 ECGþg 5 HPT
main effects: confounding
þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}CATðÞd 1 CHLþd 2 HPT
product terms: interaction

ROR¼expðÞbþd 1 CHLþd 2 HPT

60 2. Important Special Cases of the Logistic Model

Free download pdf