From the last expression we also find the
integral
where
If we assume that all the lower priority classes
have negative exponentially distributed service
times (with mean service times bk= μp-1for pri-
ority class p) we find by applying the formula
above:
If some of the lower classes have constant ser-
vice times we only have to replace the term
F(t/b 1 ; μkb 1 , ρ 1 ) with the corresponding term
for those classes.
The result when fragmentation is performed is
found to be:
4.3.3 Convolution of the Waiting
Time in a M/D/1 Queue with an
Exponentially Distributed Time
We shall use the expression
for the normalised waiting time for the M/D/1
queue to express the convolution
(in terms of a sum of terms q(t– k; ρ) that are
weighted with a geometrical factor as given
above). To show this expansion we write
F(t; μ; ρ) = μe–μtG(t;μ;ρ) where
By applying the Lemma 1 (below) we get:
.
Integrating (and collecting) we get:
The corresponding result for F(t; μ, ρ) is then:
Introducing the new summing variable j= k– i
in the first (double) sum we have
and the corresponding
expression may be written as:
( 1 −ρ)
k= 0
⎣⎦t
∑
i= 0
k
∑
ρ
μ+ρ
⎛
⎝⎜
⎞
⎠⎟
k((ρ+μ)(k−t))i
i!
e−ρ()k−t
=( 1 −ρ)
j= 0
⎣⎦t
∑
i= 0
⎣⎦t−j
∑
ρ
μ+ρ
⎛
⎝⎜
⎞
⎠⎟
i+j
((ρ+μ)(i−(t−j)))
i
i!
e−ρ()i−()t−j
=( 1 −ρ)
j= 0
⎣⎦t
∑
ρ
μ+ρ
⎛
⎝⎜
⎞
⎠⎟
j
i= 0
⎣⎦t−j
∑
(ρ(i−(t−j)))
i
i!
e−ρ()i−()t−j
=
j= 0
⎣⎦t
∑
ρ
μ+ρ
⎛
⎝⎜
⎞
⎠⎟
j
qt(−j;ρ)
k= 0
⎣⎦t
∑
i= 0
k
∑ =
j= 0
⎣⎦t
∑
i= 0
⎣⎦t−j
∑
Ft(;μ,ρ)=
μ( 1 −ρ)
μ+ρ
ρ
μ+ρ
⎛
⎝⎜
⎞
⎠⎟
k
k= 0
⎣⎦t
∑
⎛
⎝
⎜⎜
((ρ+μ)(k−t))
i
i= 0 i!
k
∑ e
−ρ()k−t
−
ρ
μ+ρ
⎛
⎝⎜
⎞
⎠⎟
k
eμ()k−t
k= 0
⎣⎦t
∑
⎞
⎠
⎟⎟.
G(t;μ,ρ)=−^1 −ρ
μ+ρ
ρ
μ+ρ
⎛
⎝⎜
⎞
⎠⎟
k
k= 0
⎣⎦t
∑
⎛
⎝
⎜⎜ eμk
− ρ
μ+ρ
⎛
⎝⎜
⎞
⎠⎟
k
eμk
k= 0
⎣⎦t
∑
((ρ+μ)(k−t))
i
i!
e−()ρ+μ()k−t
i= 0
k
∑
⎞
⎠
⎟
⎟
G(t;μ,φ)=
(1−ρ) eμk
x=k
t
∫
k= 0
⎣⎦t
∑
[]ρ(k−x)k
k!
e−()ρ+μ()k−xdx=
−
1 −ρ
μ+ρ
ρ
μ+ρ
⎛
⎝⎜
⎞
⎠⎟
k
k= 0
⎣⎦t
∑ eμk
ζ= 0
()μ+ρ()k−t
∫
ζk
k!
e−ζdζ
G(t;μ,φ)= eμx
x= 0
t
∫ q(x;ρ)dx=
(1−ρ) eμk
k= 0
⎣⎦x
∑
x= 0
t
∫
[]ρ(k−x)
k
k!
e−()ρ+μ()k−xdx.
∫t
x=0
WM/D/ 1 (x)dx=b 1 G(t/b 1 ;ρ)
G(t;ρ)= lim
μ→ 0
F(t;μ, ρ)
=
1
ρ
∑t
k=0
(q(t−k;ρ)−(1−ρ)).
W 1 c(t)=1−
1 −ρ
1 −ρ 1
q(t/b 1 ;ρ 1 )
−
1
1 −ρ 1
(P
∑
k=2
ρkF(t/b 1 ;μkb 1 ,ρ 1 )
)
b 1
bk
(
G(t/b 1 ;ρ 1 )−H(t−bk)G
(
t−bk
b 1
;ρ 1
))
W 1 c,f(t)=1−
1 −ρ
1 −ρ 1 q(t/b^1 ;ρ^1 )−
ρ− 1
1 −ρ 1
b 1
bf
(
G(t/b 1 ;ρ 1 )−H(t−bf)G
(
t−bf
b 1
;ρ 1
))
q(x;ρ)=(1−ρ)
∑x
k=0
[ρ(k−x)]k
k!
e−ρ(k−x)
F(t;μ;ρ)=μ
∫t
x=0
e−μ(t−x)q(x;ρ)dx