Computational Physics - Department of Physics

(Axel Boer) #1

290 9 Two point boundary value problems


Ĥψ(r) = (̂T+V̂)ψ(r) =Eψ(r). (9.4)

In detail this gives (


− ̄
h^2
2 m
∇^2 +V(r)

)

ψ(r) =Eψ(r). (9.5)

The eigenfunction in spherical coordinates takes the form


ψ(r) =R(r)Ylm(θ,φ), (9.6)

and the radial partR(r)is a solution to


− ̄h

2
2 m

(

1

r^2

d
dr
r^2 d
dr
−l(l+^1 )
r^2

)

R(r)+V(r)R(r) =E R(r). (9.7)

Then we substituteR(r) = ( 1 /r)u(r)and obtain


− ̄h

2
2 m

d^2
dr^2
u(r)+

(

V(r)+l(l+^1 )
r^2

̄h^2
2 m

)

u(r) =E u(r). (9.8)

We introduce a dimensionless variableρ= ( 1 /α)rwhereαis a constant with dimension length
and get


− ̄

h^2
2 mα^2

d^2
dρ^2
u(ρ)+

(

V(ρ)+
l(l+ 1 )
ρ^2

h ̄^2
2 mα^2

)

u(ρ) =E u(ρ). (9.9)

In our case we are interested in attractive potentials


V(r) =−V 0 f(r), (9.10)

whereV 0 > 0 and analyze bound states whereE< 0. The final equation can be written as


d^2
dρ^2 u(ρ)+k(ρ)u(ρ) =^0 , (9.11)

where


k(ρ) =γ

(

f(ρ)−

1

γ

l(l+ 1 )
ρ^2
−ε

)

γ=
2 mα^2 V 0
h ̄^2
ε=

|E|

V 0

(9.12)

9.2.3.1 Schrödinger equation for a spherical box potential


Let us now specify the spherical symmetric potential to


f(r) =

{

1

− 0 for

r≤a
r>a (9.13)

and chooseα=a. Then


k(ρ) =γ

{

1 −ε−^1 γl(lρ+ 21 )
−ε−−^1 γl(lρ+ 21 )

for r≤a
r>a
(9.14)
Free download pdf