406 12 Random walks and the Metropolis algorithm
Initialize:
Establish an
initial state,
for example
a positionx(i)
Suggest
a moveyt
Compute ac-
ceptance ratio
A(x(i)→yt)
Generate a
uniformly
distributed
variabler
Is
A(x(i)→
yt)≥r?
Reject move:
x(i+^1 )=x(i)
Accept move:
x(i)=yt=x(i+^1 )
Last
move?
Get local
expecta-
tion values
Last
MC
step?
Collect
samples
End
yes
no
yes
yes
no
Fig. 12.7Chart flow for the Metropolis algorithm.