14.5 Variational Monte Carlo for atoms 471
Hydrogen-like atomic radial functions
l\n 1 2 3
0 exp(−Zr) ( 2 −r)exp(−Zr/ 2 ) ( 27 − 18 r+ 2 r^2 )exp(−Zr/ 3 )
1 rexp(−Zr/ 2 ) r( 6 −r)exp(−Zr/ 3 )
2 r^2 exp(−Zr/ 3 )
Table 14.2The first few radial functions of the hydrogen-like atoms.
We can determineβby simply requiring^3
mke^2 β
h ̄^2
= 1 (14.17)
With this choice, the constantβbecomes the famous Bohr radiusa 0 = 0. 05 nma 0 =β=
̄h^2 /mke^2. We list here the standard units used in atomic physics and molecular physics calcu-
lations. It is common to scale atomic units by settingm=e=h ̄= 4 π ε 0 = 1 , see Table 14.3. We
Atomic Units
Quantity SI Atomic unit
Electron mass,m 9. 109 · 10 −^31 kg 1
Charge,e 1. 602 · 10 −^19 C 1
Planck’s reduced constant, ̄h 1. 055 · 10 −^34 Js 1
Permittivity, 4 π ε 0 1. 113 · 10 −^10 C^2 J−^1 m−^11
Energy, 4 π εe^20 a 0 27. 211 eV 1
Length,a 0 =^4 π εme^02 h ̄^20. 529 · 10 −^10 m 1
Table 14.3Scaling from SI units to atomic units.
introduce thereafter the variableλ
λ=
mβ^2
̄h^2
E,
and insertingβand the exact energyE=E 0 /n^2 , withE 0 = 13. 6 eV, we have that
λ=−
1
2 n^2
,
nbeing the principal quantum number. The equation we are thengoing to solve numerically
is now
−
1
2
∂^2 u(ρ)
∂ ρ^2
−
u(ρ)
ρ
+
l(l+ 1 )
2 ρ^2
u(ρ)−λu(ρ) = 0 , (14.18)
with the Hamiltonian
H=−
1
2
∂^2
∂ ρ^2
−
1
ρ
+
l(l+ 1 )
2 ρ^2
.
(^3) Remember that we are free to chooseβ.