50615 Many-body approaches to studies of electronic systems: Hartree-Fock theory and Density Functional Theory
respectively. The functiong(ri)is an arbitrary function, and by the substitutiong(ri) =ψν(ri)
we get
Vμex(ri)ψν(ri) =(∫
ψ∗μ(rj)1
ri j
ψν(rj)drj)
ψμ(ri). (15.29)We may then rewrite the Hartree-Fock equations asHiHFψν(ri) =ενψν(ri), (15.30)with
HiHF=hi+N
∑
μ= 1Vμd(ri)−N
∑
μ= 1Vμex(ri), (15.31)and wherehiis defined by equation (15.7).
15.4.3Detailed solution of the Hartree-Fock equations
We show here the explicit form of the Hartree-Fock for heliumand beryllium
Let us introduce
ψnlmlsms=φnlml(r)ξms(s)
withsis the spin ( 1 / 2 for electrons),msis the spin projectionms=± 1 / 2 , and the spatial part
is
φnlml(r) =Rnl(r)Ylml(rˆ)
withYthe spherical harmonics andunl=rRnl. We have for helium
Φ(r 1 ,r 2 ,α,β) =√^1
2φ 100 (r 1 )φ 100 (r 2 )[
ξ↑( 1 )ξ↓( 2 )−ξ↑( 2 )ξ↓( 1 )]
,
The direct term acts on
1
√
2
φ 100 (r 1 )φ 100 (r 2 )ξ↑( 1 )ξ↓( 2 )while the exchange term acts on
−1
√
2
φ 100 (r 1 )φ 100 (r 2 )ξ↑( 2 )ξ↓( 1 ).How do these terms get translated into the Hartree and the Fock terms?
The Hartree term
Vμd(ri) =
∫
ψμ∗(rj)1
ri j
ψμ(rj)drj,acts onψλ(ri) =φnlml(ri)ξms(si), that is it results in
Vμd(ri)ψλ(ri) =(∫
ψμ∗(rj)^1
ri j
ψμ(rj)drj)
ψλ(ri),and accounting for spins we have
Vnlmd l↑(ri)ψλ(ri) =(∫
ψ∗nlml↑(rj)^1
ri j
ψnlml↑(rj)drj)
ψλ(ri),and
Vnlmd l↓(ri)ψλ(ri) =
(∫
ψ∗nlml↓(rj)^1
ri j
ψnlml↓(rj)drj)
ψλ(ri),