Computational Physics - Department of Physics

(Axel Boer) #1

528 16 Improved Monte Carlo Approaches to Systems of Fermions


The substitution of the last result in Eq. (16.36) gives

∇k·

(

1

gik
∇kgik

)

=−

1

g^2 ik

(

∂gik
∂rik

) 2

+

1

gik

[(

d− 1
rik

)

∂gik
∂rik

+

∂^2 gik
∂r^2 ik

]

.

Inserting the last expression in Eq. (16.35) and after division byΨCwe get,

∇^2 kΨC
ΨC

=

(

∇kΨC
ΨC

) 2

+

k− 1

i= 1


1

g^2 ik

(

∂gik
∂rik

) 2

+

1

gik

[(

d− 1
rik

)

∂gik
∂rik+

∂^2 gik
∂r^2 ik

]

+

N

i=k+ 1

−^1

g^2 ki

(

∂gki
∂rki

) 2

+^1

gki

[(

d− 1
rki

)

∂gki
∂rki

+∂

(^2) gki
∂rki^2


]

. (16.37)

For the exponential case we have


∇^2 kΨPJ
ΨPJ

=

(

∇kΨPJ
ΨPJ

) 2

+

k− 1

i= 1


1

g^2 ik

(

gik
∂fik
∂rik

) 2

+

1

gik

[(

d− 1
rik

)

gik
∂fik
∂rik+


∂rik

(

gik
∂fik
∂rik

)]

+

N

i=k+ 1

−^1

g^2 ki

(

gik∂fki
∂rki

) 2

+^1

gki

[(

d− 1
rki

)

gki∂fki
∂rki

+ ∂

∂rki

(

gki∂fki
∂rki

)]

.

Using



∂rik

(

gik∂fik
∂rik

)

=∂gik
∂rik

∂fik
∂rik
+gik∂

(^2) fik
∂r^2 ik
=gik
∂fik
∂rik
∂fik
∂rik
+gik
∂^2 fik
∂rik^2
=gik


(

∂fik
∂rik

) 2

+gik∂

(^2) fik
∂rik^2
and substituting this result into the equation above gives rise to the final expression,
∇^2 kΨPJ
ΨPJ


=

(

∇kΨPJ
ΨPJ

) 2

+

k− 1

i= 1

[(

d− 1
rik

)

∂fik
∂rik

+

∂^2 fik
∂r^2 ik

]

+

N

i=k+ 1

[(

d− 1
rki

)

∂fki
∂rki

+

∂^2 fki
∂rki^2

]

. (16.38)

Again, for thelinear Padé-Jastrow, we get in this case the closed-form result

∂^2 fi j
∂r^2 i j

=−

2 ai jβi j
( 1 +βi jri j)^3

. (16.39)
Free download pdf