528 16 Improved Monte Carlo Approaches to Systems of Fermions
The substitution of the last result in Eq. (16.36) gives
∇k·
(
1
gik
∇kgik
)
=−
1
g^2 ik
(
∂gik
∂rik
) 2
+
1
gik
[(
d− 1
rik
)
∂gik
∂rik
+
∂^2 gik
∂r^2 ik
]
.
Inserting the last expression in Eq. (16.35) and after division byΨCwe get,
∇^2 kΨC
ΨC
=
(
∇kΨC
ΨC
) 2
+
k− 1
∑
i= 1
−
1
g^2 ik
(
∂gik
∂rik
) 2
+
1
gik
[(
d− 1
rik
)
∂gik
∂rik+
∂^2 gik
∂r^2 ik
]
+
N
∑
i=k+ 1
−^1
g^2 ki
(
∂gki
∂rki
) 2
+^1
gki
[(
d− 1
rki
)
∂gki
∂rki
+∂
(^2) gki
∂rki^2
]
. (16.37)
For the exponential case we have
∇^2 kΨPJ
ΨPJ
=
(
∇kΨPJ
ΨPJ
) 2
+
k− 1
∑
i= 1
−
1
g^2 ik
(
gik
∂fik
∂rik
) 2
+
1
gik
[(
d− 1
rik
)
gik
∂fik
∂rik+
∂
∂rik
(
gik
∂fik
∂rik
)]
+
N
∑
i=k+ 1
−^1
g^2 ki
(
gik∂fki
∂rki
) 2
+^1
gki
[(
d− 1
rki
)
gki∂fki
∂rki
+ ∂
∂rki
(
gki∂fki
∂rki
)]
.
Using
∂
∂rik
(
gik∂fik
∂rik
)
=∂gik
∂rik
∂fik
∂rik
+gik∂
(^2) fik
∂r^2 ik
=gik
∂fik
∂rik
∂fik
∂rik
+gik
∂^2 fik
∂rik^2
=gik
(
∂fik
∂rik
) 2
+gik∂
(^2) fik
∂rik^2
and substituting this result into the equation above gives rise to the final expression,
∇^2 kΨPJ
ΨPJ
=
(
∇kΨPJ
ΨPJ
) 2
+
k− 1
∑
i= 1
[(
d− 1
rik
)
∂fik
∂rik
+
∂^2 fik
∂r^2 ik
]
+
N
∑
i=k+ 1
[(
d− 1
rki
)
∂fki
∂rki
+
∂^2 fki
∂rki^2
]
. (16.38)
Again, for thelinear Padé-Jastrow, we get in this case the closed-form result
∂^2 fi j
∂r^2 i j
=−
2 ai jβi j
( 1 +βi jri j)^3