48 3 Numerical differentiation and interpolation
To show this for the first and second derivatives starting with the three pointsf−h=f(x 0 −
h),f 0 =f(x 0 )andfh=f(x 0 +h), we have that the Taylor expansion aroundx=x 0 gives
a−hf−h+a 0 f 0 +ahfh=a−h
∞
∑
j= 0
f 0 (j)
j!
(−h)j+a 0 f 0 +ah
∞
∑
j= 0
f 0 (j)
j!
(h)j, (3.5)
wherea−h,a 0 andahare unknown constants to be chosen so thata−hf−h+a 0 f 0 +ahfhis the
best possible approximation forf 0 ′andf 0 ′′. Eq. (3.5) can be rewritten as
a−hf−h+a 0 f 0 +ahfh= [a−h+a 0 +ah]f 0
+[ah−a−h]h f 0 ′+ [a−h+ah]
h^2 f 0 ′′
2 +
∞
∑
j= 3
f 0 (j)
j!(h)
j[(− 1 )ja−h+ah].
To determinef 0 ′, we require in the last equation that
a−h+a 0 +ah= 0 ,
−a−h+ah=
1
h
,
and
a−h+ah= 0.
These equations have the solution
a−h=−ah=−
1
2 h
,
and
a 0 = 0 ,
yielding
fh−f−h
2 h
=f 0 ′+
∞
∑
j= 1
f 0 (^2 j+^1 )
( 2 j+ 1 )!
h^2 j.
To determinef 0 ′′, we require in the last equation that
a−h+a 0 +ah= 0 ,
−a−h+ah= 0 ,
and
a−h+ah=^2
h^2
.
These equations have the solution
a−h=−ah=−
1
h^2
,
and
a 0 =−^2
h^2
,
yielding
fh− 2 f 0 +f−h
h^2
=f 0 ′′+ 2
∞
∑
j= 1
f 0 (^2 j+^2 )
( 2 j+ 2 )!
h^2 j.